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ABSTRACT

Spoken interaction with a machine results in a behaviour that
is not very common in face-to-face human communication:
Off-Talk, which is defined as speech utterances that are not
directed to an immediate interlocutor, the machine, but to an-
other person or even oneself. It is our contention that a sys-
tem which is able to detect the Off-Talk utterances can interact
with a human in a more efficient manner by acknowledging
that the utterances are not directed to the system and hence,
not replying to Off-Talk utterances. In this paper, we demon-
strate the discrimination power of a wide range of Electroen-
cephalogram (EEG) frequency bands using wavelet transform
analysis and propose models for On-Talk and Off-Talk detec-
tion using audio and EEG signals, and their fusion. Our study
shows that the EEG signal can identify the occurrence of Off-
Talk utterances with promising accuracy and its fusion with
audio features adds a slight improvement in these results.

Index Terms— multimodal interaction, dialogue sys-
tem, brain-computer interface (BCI), electroencephalogram
(EEG), on-off talk (speech) detection, multi-sensor fusion

1. INTRODUCTION

It has been observed that when people interact with computer
systems, not only do they talk to the computer system but also,
they tend to talk to themselves and to other people if present
[1, 2, 3]. Oppermann et al [1] coined the term “Off-Talk” to
denote speech that is not addressed to the computer system,
as opposed to utterances that are directed to it, and therefore
need to be understood by the system as “On-Talk”. Batliner et
al [2] open their paper with an example from Shakespeare’s
Hamlet, where Hamlet seems to change his speaking style
when addressing his interlocutor to utterances that are spo-
ken, but not directed towards his interlocutor. It shows that
this is not a new phenomena, but part of human nature that
Shakespeare expressed with his characters [2]. The definition

This research is supported by “ADAPT 13/RC/2106” project
(http://www.adaptcentre.ie/) in the SCL (Speech Communication Lab) and
DLab (Design and Innovation Lab) at Trinity College Dublin, the University
of Dublin, Ireland.

of Off-Talk, as provided by Oppermann et al [1, p. 1] encom-
passes every utterance that is not directed to the system, such
as: (i) soliloquy/thinking aloud, (ii) swearing, (iii) reading
from displayed text aloud, (iv) conversation with other per-
son(s) present, (v) telephone conversation (e.g., with cellular
phone) and (vi) extrinsic speech (e.g., video player, TV set,
etc.). The objective of this paper is to model On-Talk and
Off-Talk in terms of EEG and audio features.

Previous studies by Oppermann et al [1] report that the
loudness difference between On-Talk and Off-Talk can be
used as a significant indicator of Off-Talk and Hayakawa et
al [3] also suggest that the prosodic features can help the On-
Talk and Off-Talk detection. One of the contributions of the
present study is the demonstration of discrimination power of
EEG frequency bands for On-Talk and Off-Talk detection.

The EEG signal and its different frequency bands have
been employed in some applications, such as seizure de-
tection, emotion recognition, and even speech recognition.
Ocak [4] analyses the frequency bands between 0 Hz –
86.8 Hz using wavelet transform, and reports that the higher
bands between 43.4 Hz – 86.8 Hz provides the optimum ac-
curacy for detection of epileptic seizures. Adeli et al [5] use
a wavelet chaos methodology to detect seizure using EEGs
and EEG sub-bands and analyse EEG signals between 0 Hz –
60 Hz. Petrantonakis et al [6] use the lower frequency bands
between 8 Hz – 12 Hz and 13 Hz – 30 Hz for emotion recog-
nition. The EEG signal has also been used for the speech
recognition of unspoken words where Porbadnigk et al [7]
recorded the 16 EEG signal channels with a 128 cap mon-
tage and recognised five words with an average accuracy of
45.50%. The most prominent band of the EEG signal lies in
the lower frequencies (Alpha band for attentional demands
and Beta band for emotional and cognitive processes) [8],
but these bands may contain noise of muscle activity which
makes it difficult to measure only neuronal activity in the
bands during speech articulation, as speech articulation re-
sults in muscle activities. Muscle activity can introduce noise
in EEG signals (e.g., peak frequency of masseter muscles
movements are in 50 Hz – 60 Hz range, and frontalis muscles
movements are between 30 Hz – 40 Hz), and the noise band
limit is between 15 Hz – 100 Hz [9]. Kumar et al [10] also
report a noise range for frontalis muscles between 20 Hz –
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30 Hz and temporal muscles between 40 Hz – 80 Hz. Poste-
rior head muscle movements have a higher peak frequency
close to 100 Hz, but this depends on many factors (e.g., sex,
force and direction of contraction, etc.) [10]. Muscle activity
may introduce artefacts in the EEG signal in a frequency
range (≈20 Hz – 300 Hz) where the most artefacts are at the
lower end [11]. However, the use of physiological signals
(including the EEG signal) for speech related task in noisy
and competing speech environment is well recognised. For
removing the talk related muscle artefacts from EEG, heavy
low pass signal filtering (frequencies above 10 Hz – 12 Hz
should be filtered) can be used [12].

It is claimed that the right hemisphere of the brain is
largely responsible for the speech prosodic characteristics
[13, 14, 15] and Heart Rate (HR) and Skin Conductance (SC)
also help in predicting the cognitive states [16], emotions
[17], and On-Talk and Off-Talk [3]. From the literature as
stated above, we conclude three things: (i) First, the prosodic
characteristics are different for On-Talk and Off-Talk, (ii) Sec-
ond, the right hemisphere of the brain largely determines the
speech prosodic characteristics, and (iii) Third, the EEG sig-
nal is full of artefacts while someone is speaking, but the
artefacts’ range is between 15 Hz – 300 Hz, and there are still
some frequencies < 15 Hz which are not sensitive to muscle
artefacts and contain the neural activity. Moreover, the skull
EEG electrodes are unable to record the frequencies above
40 Hz according to clinical standards. We note that, while
contrary to a common misconception the human skull does
not filter out higher frequencies [18], neural activity at such
frequencies is harder to detect due attenuation caused by the
skull’s resistivity and the distance between the small genera-
tor and EEG electrode [19]. That is why this study assumes
that the frequencies above 40 Hz contain only muscle arte-
facts, providing an opportunity to demonstrate the effect of
muscle artefacts in the EEG signal for On-Talk and Off-Talk
detection. Therefore, we analysed the full frequency band
(0 Hz – 512 Hz) using Discrete Wavelet Transform (DWT)
analysis to explore both the neural activity and muscle arte-
facts for On-Talk and Off-Talk detection.

2. DATA SET

The data from the ILMT-s2s corpus1 was used for this paper
due to the availability of finely time-stamped audio and phys-
iological signals (EEG, heart rate and skin conductance) and
also to use the results of Hayakawa et al [3] as a reference to
determine the degree of any improvement.

The ILMT-s2s corpus: The corpus consists of 15 dia-
logues of English speakers communicating with Portuguese
speakers to perform the HCRC Edinburgh Map Task [20],
a task where the subject is to guide the interlocutor along a
predefined route on the map of one of the subjects. The sub-

1ISLRN: 100-610-774-625-0.

jects are situated in different rooms and communicate in their
mother tongue to their interlocutor using a Speech-to-Speech
Machine Translation (S2S-MT) system that Hayakawa et
al [21] call the ILMT-s2s System. The corpus consists of
≈9.5 hours of audio, video and biological signal recordings
of interlingual system mediated communication of 15 subject
pairs (15 English and 15 Portuguese speakers).

The ILMT-s2s System: The S2S-MT system uses a
‘Push-to-Talk’ button to activate transactions, with each sub-
ject’s voice being used only as an input and not transmitted to
the interlocutor. The subject’s utterance is automatically con-
verted into text (ASR), machine translated and then the trans-
lated text is sent to the interlocutor’s computer to be output
using Text-to-Speech (TTS), speech synthesis. Aside from
the synthesised speech output, the ASR result is displayed on
the subject’s computer and the TTS text is displayed on the
interlocutor’s computer.

Audio and Video Recordings: Each dialogue recording
consists of two audio and five video channels of data, but for
this study, the audio of the whole dialogue that was captured
by the 2 main video cameras was used.

Biosignal Recording: The corpus contains recordings of
Heart Rate (HR) using the Blood-Volume Pulse (BVP) sensor,
Skin Conductance (SC) and Electroencephalography (EGG)
collected using a Mind Media B.V., Nexus-4 from one subject
of the dialogue pair. The BVP sensor placed on the index fin-
ger, with the SC sensor put on the middle and ring finger. The
EEG sensors are placed in the F4, C4, P4 (right hemisphere of
the brain that is responsible for the control of speech prosody
[13, 14, 15]) with a ground channel placed at A1 (as depicted
in Figure 1) of the 10 – 20 location system [22]. The sampling
frequencies for the SC, HR and EEG are 32 kHz, 32 kHz and
1,024 kHz respectively.
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Fig. 1: 10 – 20 system layout map

Annotation of On-Talk and Off-Talk: Since the ILMT-
s2s System uses a ‘Push-to-Talk’ activation system, subject
utterances that activated the S2S-MT system are considered as
On-Talk and all other utterances are labelled as Off-Talk. Of
the 1,681 transcribed utterances, 1,127 (≈67.0%) are labelled
as On-Talk and 554 (≈33.0%) are labelled as Off-Talk.
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3. EEG SIGNAL DECOMPOSITION

The EEG signal (S) is decomposed into 11 components us-
ing the Discrete Wavelet Transform (DWT) using MATLAB,2

where S = d1 + d2 + d3 + . . . + d10 + a10 as depicted in
Figure 2. The DWT helps us in evaluating the discrimina-
tion power of each component (d1, d2 etc) for the On-Talk –
Off-Talk prediction.

4. FEATURE EXTRACTION

The following features are used for the classification task.
Audio features: We use openSMILE [23] to extract the

acoustic features that have been widely used for emotion and
spoken expression recognition [24]. The acoustic feature set
contains the MFCC, voice quality, fundamental frequency
(F0), F0 envelope, LSP and intensity features along with
their first and second order derivatives. However, many
statistical functions are also applied to the features which
resulted in-total of 988 features for every speech segment.
The motivation behind using this feature set is to model the
differences in spoken expressions for On-Talk and Off-Talk
detection.

Physiological features: For each annotated label we have
extracted the Shannon Entropy, mean, std, mode, min, max,
median, energy, power, minimum ratio and maximum ratio
along with their first and second order derivatives. As a result,
we have 66 features for each component (e.g., d1, d2); 33 for
sensor A, and 33 for Sensor B (Figure 1) and in total, 726
EEG features for each annotated label.

5. CLASSIFICATION METHODS

We investigated the automatic detection of ‘On-Talk and
Off-Talk utterances’ using four machine learning methods,
namely Linear Discrimination Analysis (LDA), Nearest
Neighbour (KNN with K=15), Decision Trees (DT) and
Random Forest (RF). These classifiers are employed in MAT-
LAB using the statistics and machine learning toolbox but
the RF classifier is employed in python using the scikit-learn
library.3 LDA works by assuming that the feature sets of the
classes to be discerned are drawn from different Gaussian
distributions and adopting a pseudo-linear discriminant anal-
ysis (i.e., using the pseudo-inverse of the covariance matrix
[25]). KNN and DT are non-parametric methods.

6. RESULTS AND DISCUSSION

We conducted an experiment using different EEG frequency
bands and acoustic features. We assessed the results using the
A-weighted F -score statistic (with the β parameter set to 1).

2http://uk.mathworks.com/products/matlab/ – last verified
10/2017

3http://scikit-learn.org/stable/ – last verified 10/2017

In this setting, the A-weighted F -score is equivalent to the
averaged harmonic mean of both classes which results in a
baseline of 50% for the classification task. The classification
results of the 1,127 On-Talk and 554 Off-Talk utterances are
reported in Table 1.

Table 1: 10-fold cross validation results (A-weighted F -
score %) for On-Talk – Off-Talk detection. (Baseline is 50%)

Results LDA KNN DT RF
d1: (256 Hz – 512 Hz) 67.53 65.64 65.92 72.01
d2: (128 Hz – 256 Hz) 65.59 65.87 62.24 68.77
d3: (64 Hz – 128 Hz) 65.24 64.11 61.41 67.70
d4: (32 Hz – 64 Hz) 59.10 56.30 59.49 63.11
d5: (16 Hz – 32 Hz) 55.11 55.63 59.01 61.51
d6: (8 Hz – 16 Hz) 57.55 56.11 59.05 62.93
d7: (4 Hz – 8 Hz) 58.64 54.33 55.40 60.54
d8: (2 Hz – 4 Hz) 58.36 51.45 59.19 61.86
d9: (1 Hz – 2 Hz) 55.46 52.28 55.78 62.67

d10: (0.5 Hz – 1 Hz) 56.02 44.64 55.37 60.20
a10: (0 Hz – 0.5 Hz) 56.32 64.03 70.76 74.80

Audio 82.73 67.91 84.14 91.36
Audio + d1 82.63 65.98 83.62 92.08

Audio + a10 80.34 68.74 82.15 91.45

Of the four classification methods, the results indicate
that the Random Forest (RF) classifier provides the best re-
sults in all tested settings. The highest frequency band (d1)
achieved an A-weighted F -score of 72.19%, and the sec-
ond highest frequency band (d2) provides an A-weighted
F -score of 68.77%. The reason why results are better using
high EEG frequency bands is probably that these frequencies
are reflecting speech related muscle artefacts in the recorded
EEG signal, as explained in section 1. The EEG frequen-
cies (> 15Hz and < 40Hz) contains muscle artefacts and
neural activities, and able to detect the On-Talk and Off-Talk.
The lowest frequency band a10 produced the best results
(74.80%) for the classification task which may be due to the
fact that the right hemisphere of human brain is responsi-
ble for speech prosody and that prosodic information may
be encoded in lower bands of the EEG signal because the
lower bands < 15Hz do not contain the muscle artefacts, as
explained in section 1. The audio features set provides the
best classification results (91.36%), and the fusion of audio
and EEG features (d1) improves the performance slightly
(92.08%). We draw a Venn digram to explore the mutual
information of the top three results which are obtained using
d1, a10 and the Audio signal as depicted in Figure 3, and the
confusion matrix of this figure is listed in Table 2.

Table 2: Confusion Matrix of the top three best results, show-
ing classification of instances

a10 d1 Audio
Off-T. On-T. Off-T. On-T. Off-T. On-T.

Off-Talk 365 189 308 246 457 97
On-Talk 103 1,024 150 977 27 1,100

In Figure 3, the ‘blue circle (Target)’ represents the anno-
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Fig. 2: A wavelet decomposition of the EEG signal (S) into 11 components (d1, d2, . . . , a10) where S = d1 + d2 + . . .+ a10
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Fig. 3: Mutual Information: Venn diagram of the results

tated labels, the ‘yellow circle’ represents the predicted labels
by the features of a10 frequency band using the RF classi-
fier, the ‘green circle’ represents the predicted labels by the
acoustic features using the RF classifier, and finally the ‘red
circle’ represents the predicted labels by the features of a10
frequency band using the RF classifier. From the Venn di-
agrams overlap, it is observed that there are 38 instances (8
On-Talk and 30 Off-Talk) which have not been recognised by
any of the feature sets. However there are 1,070 instances
(875 On-Talk and 195 Off-Talk) which have been detected by
all three feature sets. The EEG features provide less accurate
results than audio features but are able to capture some infor-
mation (41 (yellow circle: a10), 30 (overlap of yellow: a10
and red circles: d1) and 15 (red circle: d1) instances) which
is not captured by the audio features as depicted in Figure 3.

We have also conducted a mid-p-value McNemar test
to compare the results of a10, d1 and Audio features with
a null hypothesis which is that a10, d1 and Audio features
have equal accuracy for predicting the target (On-Talk –
Off-Talk detection). The test rejects the null hypothesis for
‘Audio and a10’ (pAudio−a10 = 1.67e−36), and ‘Audio and
d1’ (pAudio−d1 = 9.44e−52) but fails to reject the null hypoth-
esis for ‘a10 and d1’ (pa10−d1 = 0.08). High-frequency bands
(> 40 Hz e.g., d1) provide good results, and due to the muscle
activity they capture, we can confirm that the On-Talk and
Off-Talk utterances have a different muscle activity pattern.

In addition, we also obtain good results from the {a10 (0 Hz –
0.5 Hz)} band which has robustness against muscle activities,
which indicates that On-Talk and Off-Talk utterances also
have different neural activity patterns.

In a previous study, Hayakawa et al [3] explored the
EEG Gamma band along with SC, HR and acoustic features
for the detection of On-Talk and Off-Talk and reported an
A-weighted F -scores of 57.19% when using only the EEG
Gamma band. Our results of the wavelet analysis of the EEG
signals significantly improves the performance for On-Talk
and Off-Talk detection up to 74.80%. The acoustic features
provide the best results for On-Talk and Off-Talk detection
in this study and in the results from Hayakawa et al [3].
However, the results from Hayakawa et al [3] do not provide
promising results using physiological signals alone and used
more acoustic features (6,371 acoustic features) than those
used in the method (988 acoustic features) reported in this pa-
per. In the previous study Hayakawa et al [3] only present an
idea of detecting On-Talk and Off-Talk using different modal-
ities (e.g., EEG gamma band, audio) instead of demonstrating
and evaluating the results in detail, which this study covers.

7. CONCLUSION

The lowest frequency band {a10 (0 Hz – 0.5 Hz)} of the EEG
signal provides more accurate result than other frequency
bands, and audio features provide the best results. The high
frequencies reflect muscle artefacts, and the results indicate
that high frequency (> 40 Hz) bands of the EEG signal con-
tribute significantly towards the detection of On-Talk and
Off-Talk utterances. Hence, the muscle artefacts in the EEG
signal have a positive influence towards the detection of On-
Talk and Off-Talk. A possible direction of future work is
to explore muscle movements during On-Talk and Off-Talk
using visual and Electromyography (EMG) signals. Another
possible future work is to investigate the EEG signal while
someone is planning to press the button or planning to speak.
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