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ABSTRACT

The paper is motivated by recent urgency to design continuous and
cuff-less blood pressure (BP) monitoring solutions to prevent, de-
tect, and treat the hypertension. In this regard, we propose a novel
wavelet-based feature extraction algorithm coupled with an adap-
tive and multiple-model Kalman filtering framework (referred to as
the WAKE-BPAT), which provides accurate and dynamic BP esti-
mates by extraction and fusion of different pulse arrival time (PAT)
features. In particular, a wavelet transform and histogram analysis-
based robust and high-accurate R-peak detection algorithm is pro-
posed without incorporation of any pre-defined thresholds. This in
combination with high-quality photoplethysmogram (PPG) charac-
teristic points obtained from signal recordings of a recently devel-
oped PPG device (Gen-1), are used for BP estimation, which is mod-
eled as a hybrid state-space model with structural uncertainties to
fuse different PAT features in an adaptive fashion. Our experimen-
tal evaluations based on a real data set collected via Gen-1 device
confirms the superiority of the proposed WAKE-BPAT framework
in comparison to its counterparts.

Index Terms— Blood Pressure Estimation, Photoplethysmo-
gram, Pulse Arrival Time, Wavelet Transform, Kalman Filter.

1. INTRODUCTION

Blood pressure (BP) is a crucial hemodynamic parameter that varies
between two pressure levels in each heartbeat, called the Systolic
BP (SBP) and the Diastolic BP (DBP). Hypertension, which is also
known as High Blood Pressure (HBP), is defined as a medical condi-
tion in which arteries are experiencing a persistently elevated blood
pressure, and is the cause for at least 45% deaths due to heart disease,
and 51% of deaths due to stroke [1]. The HBP is usually referred
to as the silent killer, as it does not show up significant symptoms.
However, long-term high blood pressure is a principal risk factor
for coronary artery disease, stroke, heart failure, peripheral vascular
disease, vision loss, and chronic kidney disease [2]. An individual
is called Hypertensive, if their SBP or DBP reaches more than 140
or 90 mmHg respectively, at rest [3]. The BP measurements, and
in particular, continuous BP measurements are great means of re-
trieving invaluable information about subjects’ health conditions in
order to prevent, detect, evaluate, and early start of treatment of hy-
pertension [4]. Conventionally, cuff-based instruments are used to
determine the BP, which are by nature discontinuous means of mea-
surement, time consuming to use, and also cause discomfort and in-
convenience in case of many repetitions.

The aforementioned drawbacks of cuff-based BP monitoring
have resulted in a recent surge of interest [5–13] to develop novel
and innovative signal processing solutions for continuous BP mon-
itoring. A potential surrogate of BP which is able to perform BP
measurements non-invasively and continuously is the Pulse Arrival
Time (PAT), which is defined as the time for the pulse to travel from
the heart to a peripheral site. The PAT is considered as a notably
practical solution for ambulatory BP monitoring due to being read-
ily acquired by wearable devices. Ahmad et al. [14] showed that a
significant correlation exists between the BP and the PAT, however,
this correlation depends on several parameters, which vary among
different individuals. In this paper, we aim to investigate BP estima-
tion through ECG and PPG signals [15], using the PAT method.

To date, there are numerous proposed methods in the literature
for detection of QRS-complex and R-peak. Recently, a derivative
and adaptive threshold-based algorithm is proposed by Khamis et
al. in [16] for the detection of QRS complex. A quadratic filter-
based ECG enhancement and QRS detection technique is proposed
by Phukpattaranont in [17]. However, the detection performance of
such methods is reliant on heuristically determined threshold val-
ues, that are either static or dynamic in time or frequency domains.
Threshold-based detection approaches, however, are not generally
suitable and/or applicable, particularly in presence of in-band noises.
On the other hand, we utilize the first-generation (Gen-1) device very
recently developed by Marefat and Mohseniet al. [15] for collect-
ing PPG signals. The Gen-1 device performs minimally invasive,
muscle-based recording of the PPG signal in the reflective mode.
Finally, different linear [9] and non-linear models [4, 7] have been
developed in the literature to estimate the BP from a computed PAT
feature. While most of the model-based BP estimations from PAT
are static algorithms in nature, recently dynamic BP estimation via
Kalman filtering (KF) [8] is proposed, however, fixed/known param-
eters are used based on a single first-order scalar Markov model and
a single extracted PAT feature.

In this paper, we propose a novel wavelet-based feature ex-
traction algorithm coupled with an adaptive and multiple-model
Kalman filtering framework (referred to as the WAKE-BPAT). As
the resulting pattern of the PPG wave obtained from Gen-1 device
is of high quality, high signal-to-noise ratio (SNR), and is smooth, a
derivative and threshold-based technique is developed for extraction
of main features from the PPG signals in the WAKE-BPAT frame-
work. Due to incorporation of state-of-the-art PPG recording system
(Gen-1 device [15]), performance of continuous and automated
BP-measurement relies heavily upon the accuracy of the feature ex-
traction algorithm from ECG signal. A Wavelet Transform (WT) and
histogram analysis-based robust and highly-accurate R-peak detec-
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tion algorithm is proposed here. The novelty of the algorithm lies in
its accuracy and simplicity. The algorithm does not use any thresh-
old value for the detection of R-peaks. The third contribution of the
paper is development of a novel adaptive, and multiple model [18]
KF framework for BP estimation, which considers inherit structural
uncertainties of the state and observation models, and fuses different
PAT features in an adaptive fashion.

The rest of the paper is organized as follows: Section 2 formu-
lates the problem. The proposed WAKE-BPAT framework is devel-
oped in Section 3. Section 4 presents the experimental results. Fi-
nally, Section 5 concludes the paper.

2. PROBLEM FORMULATION

As stated previously, the PAT is, typically, derived from ECG and
PPG signals. The PPG is a non-invasive measurement technique that
measures relative blood volume changes in the blood vessels. On the
other hand, the ECG is the graphical representation of the heart’s
electrical activity, and the QRS-complex (Q, R and S waves are usu-
ally treated as a single composite wave known as the QRS-complex)
is the most prominent feature of the ECG signal. It provides useful
information about the depolarization of ventricular myocardium and
indicates the start of ventricular contraction of the heart.

Commonly, the PAT is computed from the time interval between
the R-peak of the ECG signal and a characteristic point of the PPG
signal. Different features (characteristics points) can be extracted
from the PPG signals among which the following three are typi-
cally used: (i) The on-set of the PPG; (ii) The peak of the PPG, and;
(iii)The peak of the derivative of each PPG cycle i.e, the maximum-
slope-point (MSP) of each PPG cycle. Once characteristic points are
identified through feature extraction on both the ECG and PPG sig-
nals, the next step is to estimate the BP based on the extracted fea-
tures. The BP estimation task depends on the model used to relate
the BP to the selected time difference such as the following

Model 1: BP = α1 ln(PAT) + β1 (1)
Model 2: BP = α2PAT + β2 (2)

Model 3: BP =
α3

PAT2 + β3, (3)

where the model parameters are, typically, computed through a cal-
ibration step, which is performed based on couple of ground truth
points and using least square (LS) approach.

We develop a KF-based algorithm for dynamical estimation of
the BP values from PAT features. In this context, recently Refer-
ence [8] proposed a KF formulation where the BP constitutes the
state variable and a simple random walk process is used to model
BP dynamics. The observation model is constructed based on a sin-
gle PAT feature resulting in the following state-space model to track
the BP continuously

State Model: BP(k) = BP(k − 1) + w(k) (4)

Observation Model: ln PAT(k) =
1

α1
BP(k)− β1

α1
+ v(k),(5)

where k denotes the time index, and w(k) ∼ N (0, Q) and v(k) ∼
N (0, R) represent the forcing terms and the observation noise, re-
spectively. This completes a brief overview of the problem at hand.
Next, we present the proposed WAKE-BPAT framework.

3. PROPOSED WAKE-BPAT

The proposed WAKE-BPAT framework consists of three main com-
ponents namely: (i) Pre-processing; (ii) Feature extraction, and; (iii)

Fig. 1. (a) Noisy ECG signal. (b) Denoised ECG signal. (c) Noisy PPG
signal. (d) Denoised PPG signal.

BP estimation mechanism. Below, we describe the above mentioned
components respectively and in details.

3.1. Pre-processing

At the time of acquisition, ECG signal often gets heavily contami-
nated by various high and low-frequency noises including the 50/60
Hz power line interference, electrosurgical noise, and baseline drift,
which degrades the performance and the accuracy of automated ECG
processing algorithms. Therefore, at first, the ECG signal has to be
extracted from the background noise. The WT is a well-regarded
technique which is able to effectively decompose a signal at various
time-frequency resolutions and consequently, WT has been widely
utilized for analyzing non-stationary signals such as the ECG.

The ECG signal is characterized by a periodic or quasi-periodic
occurrence of various waves and segments having different fre-
quency bands. Hence, WT is considered to be an excellent means for
the analysis of ECG signals [19]. Assorted ECG-waves, segments,
and also the noises come to be prominent at different frequency
bands once subjected to the multi-resolution wavelet analysis. The
discrete wavelet transform (DWT)-based ECG de-noising technique
used in [20] is adopted in this paper. The clinical bandwidth of ECG
signal lies between 0.05-100 Hz [21], and the signal is recorded at
various sampling rates starting from 200Hz. To bring uniformity to
the processing approach of ECG signals recorded at different sam-
pling rates, the signal is re-sampled at 1KHz, and then the signal is
decomposed using DWT by selecting the Biorthogonal 6.8 wavelet
(bior6.8) as the mother wavelet function.

High and low-frequency noises are eliminated by discarding the
corresponding detail and approximation wavelet-coefficients from
the noisy signal. On the other hand, all the clinical signatures of
PPG signal reside below 25 Hz [22], and therefore, the PPG signal is
recorded at different sampling rates starting from 50Hz. Hence, the
input PPG signal is also re-sampled at 1 KHz due to the same reason
as in the case of ECG. The DWT-based signal denoising technique,
which has been used for ECG is also used for PPG, selecting the
’db8’ wavelet function from the Daubechie’s wavelet family [7]. An
illustration of noisy and denoised ECG and PPG signals are shown
in Fig 1.

3.2. Feature Extraction
The feature extraction component of the proposed WAKE-BPAT
framework consists of two main tasks as explained below.

3.2.1. The R-peak Detection

Since the detail-coefficients D4 and D5 of the wavelet trans-
formed data contain most of the information-energy of the QRS-
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Fig. 2. (a) Denoised ECG. (b) QRS-coef data. (c) Histogram analysis of
the QRS-coef. (d) Amplitude-band where the population of coefficients is
maximum. (e) Modified QRS-coef data. (f) Detected R-peaks.

complex [20], these two coefficient-bands are selected for the pur-
pose of R-peak detection. An array, which is denoted as QRS-coef
is formed by adding the coefficients of the D4 and D5 (QRS-coef
= D4 + D5). The local peaks of the data present in the QRS-coef
array clearly indicate the QRS-complexes of the denoised signal.
To eliminate the contribution of other waves and segments on the
QRS-coef data, and to boost the detection accuracy of the R-peak
points, histogram analysis of the wavelet coefficients present in
the QRS-coef array is performed. Since most of the samples of an
ECG-beat (one complete ECG cycle is considered as a beat) belong
to the low-frequency non-QRS regions (T and P-peaks, ST-segment
etc.), the peak of the histogram, and its surrounding samples values
constitute the non-QRS regions. The amplitude-band where the pop-
ulation of coefficients is maximum is identified from the histogram
analysis, and the corresponding amplitudes of those coefficients
are made zero in the QRS-coef array. Finally, the local peaks are
identified from the modified QRS-coef array, and the corresponding
indices are marked as R-peak in the filtered signal. Figure 2 demon-
strates the fact. The R-peak detection algorithm has been tested on a
large number of ECG data files of different sampling rates, and the
accuracy is found over 99.9%.

3.2.2. Fiducial-point Detection from PPG Signal

First-derivative of the filtered PPG (FD-PPG) signal is calculated,
and two different features are extracted from the FD-PPG signal: (1)
maximum-slope-point (MSP) of every PPG cycle, and (2) systolic-
peaks. The maximum amplitude of the FD-PPG signal is found, and
the indexes of those samples having an amplitude within 25% of
the maximum are marked, and then the local-maximum amplitude
within a sliding-window of width 0.25s [23] is identified and con-
sidered as the MSP of that PPG cycle. Now, traversing right in the
time-domain PPG signal from the most recently detected MSP, the
first slope-reversal event is identified as the systolic-peak. Figure 3
demonstrates the operations.

Now, the PPG-onset point is detected using a different method.
First, the systolic-peak intervals in the filtered signal are divided into
2:1 ratio, i.e., the mid-point of the peak-to-peak interval is calcu-
lated, which is denoted as “M”. Then, all the samples in between
every M-point and the immediate next MSP are considered. There-
after, among those considered samples, the maximum value of an-
gle θ is found, and the corresponding index on the filtered PPG is
marked as the PPG-onset point. Figure 4(a) shows the operations,
while Figure 4(b) illustrates the Gen-1 Device.

3.3. BP Estimation Models

We developed an adaptive KF-based algorithm for dynamical esti-

Fig. 3. (a) Filtered PPG. (b) FD-PPG signal where marked samples are the
ones within the threshold value. (c) Detected MSP and systolic-peaks.

(a) (b)

Fig. 4. (a) The PPG-onset detection technique. (b) The Gen-1 Device for
PPG recordings developed recently by Marefat and Mohseniet al. [15].

mation of the BP values from features extracted in Section 3.2. Un-
like the conventional approach of using a simple random walk to
model BP evolutions over time, we use an Autoregressive (AR) pro-
cess of order p (in the experiments we used p = 4) for relating the
current BP estimates to its previous (N > 1) values, i.e.,

BP(k) =
p∑
i=1

ai(k)BP(k − i) + w(k), (6)

where ai, for (1 ≤ i ≤ p), denotes the AR coefficients to be updated
at each iteration. The evolution of the AR coefficients is modeled as

a(k) , [a1(k), . . . , ap(k)]
T = a(k − 1) + ν(k), (7)

where superscript T denotes transpose operator, and ν(k) is consid-
ered to follow a zero-mean and white Gaussian process with known
covariance matrix. To recursively update the AR coefficients, we run
a KF based on Reference [24] where an instantaneous (static) esti-
mate of the current BP based on Model 3 in Eq. (3) is used in the
update step of the KF implemented for updating the AR coefficients.

Instead of using a single observation model (such as the one
introduced in Eq. (5)), we propose to use a bank (combination) of
(Nf > 1) different observation models and construct a hybrid state-
space model for recursive estimation of the BP (in the experiments
we used Nf = 2 based on the two characteristic points of the PAT
features). In other words, we propose to consider a combination of
observation models (PAT features) and fuse the estimation result
based on each feature using adaptively computed weights. Intuitively
speaking, the reason behind this scenario is that one feature might
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Table 1. Estimated BP versus the actual BP based on the proposed WAKE-BPAT.

Statistics WAKE-BPAT Proposed Features via Model 1 Reference [12] Reference [10]
Mean Error 2.67 3.47 4.32 4.46

Standard Deviation 2.51 2.79 5.46 6.05
RMSE 3.62 4.41 5.52 5.74
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Fig. 5. Estimated versus the actual BP. (a) Based on [12], i.e., Model 3. (b)
Based on the proposed WAKE-BPAT and Model 1.

not be the best choice at all times and potentially using different
measurement models would improve the performance. The observa-
tion model used in the WAKE-BPAT is, therefore, given by

y(l)(k) = C
(l)
1 BP(k) + C

(l)
2 + v(l)(k), (8)

where superscript l, for (1 ≤ l ≤ Nf ), refers to one of the can-
didate PAT features/models within the set of Nf considered multi-
ple models, and y(l)(k) denotes its associated PAT measurement.
For example, when Model 1 in Eq. (1) is included in the set of
candidate models, the mode-matched terms in Eq. (8) are defined
based on Eq. (5) as follows: y(l)(k) , ln PAT(k), C(l)

1 , 1
α1

, and

C
(l)
2 , − β1

α1
. A KF is matched to each observation model l to form

an updated BP estimate defined as B̂P
(l)
(k) , E{BP(k)|Y (l)(k)}

where Y (l)(k) = {y(l)(1), . . . , y(l)(k)} is the set of all available
observations upto and including the current iteration, and E{·} de-
notes expectation operator. The mode-matched KFs are then fused
through a collapsing step [18] which forms the optimal single Gaus-
sian distribution in the mean-square error (MSE). Details of adaptive
multiple model KF estimation is not included here due to lack of
space, please refer to [18] and references therein for further details.

4. SIMULATION AND RESULTS

In this section, we present experimental results based on a real data
set collected from a healthy female volunteer. The BP variation is
introduced by change in posture and exercise of the volunteer. The
measured BP varied between 101 to 159 mmHg. The ECG signals
are collected via a 3-lead ECG commercial device, while the PPG
recordings are collected based on the Gen-1 device from fingertip.
As stated previously, Gen-1 device is very recently developed by
Marefat and Mohseni et al., which records the PPG signals in the re-
flective mode using a portable sensor board interfaced with a battery-
powered main board for control and data processing. Please refer to
Reference [15] for further details on the Gen-1 device. Finally, 20
reference BP recordings are measured by a cuff-based Omron 10 de-
vice. The results obtained based on all 20 measurements with Point
5 with BP equal to 101 mmHg, and Point 6 with BP equal to 141

mmHg are used for calibration via the LS approach. The PAT val-
ues are averaged over previous 10 epochs at each ground truth point.
Four different BP estimation algorithms are implemented and com-
pared for accuracy as follows: (i) The proposed WAKE-BPAT frame-
work which provides dynamical estimates of the BP and uses the
proposed features together with the proposed adaptive and multiple
model KF; (ii) Instantaneous (static) BP estimation based on Model
1 and the proposed features; (iii) Instantaneous BP estimation based
on [12], and; (iv) Instantaneous BP estimation based on [10].

Table 1, compares the accuracy of the above four estimation al-
gorithms in terms of the mean error in absolute value, the standard
deviation, and the root mean squared error (RMSE). It is worth men-
tioning that mean estimation error below 5 mmHg (in absolute value)
with standard derivation of below 8 mmHg is the requirement set
by the Association for the Advancement of Medical Instrumenta-
tion. It is observed that the proposed WAKE-BPAT framework pro-
vides significantly superior results in comparison to its counterpart
based on previously developed features. In particular, the mean er-
ror in absolute value is reduced approximately in half. At the same
time, the effect of the proposed feature extraction algorithms is ob-
served in the improved accuracy of Item (ii). This improvement can
be attributed to the proposed histogram analysis of the wavelet co-
efficients, which not only helps removing the contribution of other
waves, but also the presence of in-band noises, which in-turns serves
to accurately and reliably detect R-peaks. The prime advantage of
the proposed R-peak detection algorithm over others is that it does
not require any threshold value for the estimation of the peaks. This
algorithm is also potential to be effectively employed in a variety
of applications including heart rate calculation, heart rate variability
estimation, and classification of ECG beats. Fig. 5 compares the es-
timation error results in absolute value versus the actual BP values
computed based on Items (i) and (iii). It is observed the proposed
WAKE-BPAT framework outperforms its counterpart and the esti-
mated BP values are fairly close to their actual ground truth, which
attests to the effectiveness of the proposed cuff-less and continuous
BP estimation framework.

5. CONCLUSION

In this paper, we proposed a novel framework for non-invasive and
continuous estimation of the blood pressure (BP) from Pulse Arrival
Time (PAT). The PAT is computed from the time interval between
the R-peak of the ECG signal and a characteristic point of the PPG
signal collected based on a recently developed PPG recording device
(Gen-1). In particular, we proposed a wavelet-based feature extrac-
tion algorithm coupled with an adaptive and multiple-model Kalman
filtering framework (referred to as the WAKE-BPAT), which pro-
vides accurate BP estimates by extraction/fusion of different PAT
characteristics. The proposed WAKE-BPAT framework is evaluated
based on a real data set, and it was shown that the proposed frame-
work significantly outperforms its counterparts. One potential venue
for future investigation is to use nonlinear filters instead of the KF.
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