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ABSTRACT

Tremor extraction techniques are considered as the central compo-
nent of several rehabilitative and compensatory robotic technologies,
and the accuracy of such filters can directly affect the performance
of the aforementioned technologies. Motivated by this fact, the paper
proposes an adaptive estimation framework, referred to as Multiple
Adaptive Reduced-order Kalman filtering (KFE-BMFLC), for ex-
traction of pathological hand tremors. The proposed KFE-BMFLC
framework is designed with the goal of improving the performance
of an existing state-of-the-art filtering technique, i.e. Enhanced
Band-limited Fourier Linear Combiner (E-BMFLC), which has
shown a promising potential in extracting involuntary hand motions
but uses embedded least mean square (LMS) estimation approach.
The proposed technique is capable of reducing the computational
overhead in comparison to that of the conventional BMFLC tech-
nique, while increasing the estimation accuracy.

1. INTRODUCTION

Parkinson’s disease (PD) is a progressive movement disorder re-
sulted from death of brain cells in mid-brain, which are responsible
for producing dopamine. The four major motor symptoms associated
with PD are tremor, rigidity, bradykinesia, and postural instability.
As these symptoms become more pronounced, patients may develop
severe difficulty in walking, talking, and ultimately performing Ac-
tivities of Daily Living (ADLs) [1]. Common treatments developed
for controlling PD-related hand tremors, typically, belong to one of
the following two categories: (i) Prescribing dopaminergic medica-
tions, and; (ii) Deep brain stimulation [2]. The latter is a surgical
option and is mostly considered if the patient develops resistance to
the medication [3]. However, there could be several possible side
effects and complications associated with both methods [4]. As a re-
sult, during the last decade, alternative and assistive therapeutic and
technological techniques have attracted a great deal of interest [2]
(with the goal of reducing/delaying the need for increasing dosage
of the medications or conducting the surgical option).

In this regard, active tremor suppression [5] has been suggested
by several researchers as an alternative solution. Accordingly, wear-
able assistive robotic exoskeleton have been proposed in the liter-
ature to compensate for pathological hand tremor, with the goal of
providing the patient with a better control over upper-limb move-
ment during performance of ADLs [6]. In addition to the above, re-
cent literature supports the effectiveness of interactive rehabilitation
for enhancing motor control in PD patients. As a result, new robotic
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rehabilitation techniques have been proposed in the literature that
can assist patients in performing rehabilitative tasks in virtual reality
environments while damping the mechanical energy of the involun-
tary hand tremors in a safe manner.

Performance of both rehabilitative and assistive technologies,
designed for PD patients, depends critically on the real-time accu-
racy of the incorporated hand tremor extraction methodology. In
this regard, several signal processing filtering techniques have been
developed in the literature, some of which had been initially de-
signed for extracting physiological (not pathological) hand tremor
of healthy humans. An example is the Band-limited Fourier linear
combiner (BMFLC) technique, which is one of the most popular
methods for extracting physiological hand tremors, and is initially
designed to compensate for tremor in surgeon’s hand during delicate
surgeries [7–10]. It is worth mentioning that, extraction of the patho-
logical hand tremors (such as those caused by PD) is significantly
more complicated in comparison to that of physiological tremors.
This issue is due to the lower frequency range, higher amplitude,
and higher time-based variability of the tremor signals [11]. In order
to resolve the above-mentioned issues, recently, a modified format
of the BMFLC has been designed in [6] to extract pathological hand
tremors. Referred to as Enhanced-BMFLC (E-BMFLC), this filter:
(i) Takes advantage of an enhanced harmonic model for modeling
the complete motion signal, and; (ii) Implements a memory manip-
ulation technique to enhance the performance of the BMFLC filter
in dealing with non-periodic pathological tremors. The E-BMFLC
technique, however, is developed based on an embedded recursive
Least Mean Square (LMS) algorithm. In our recent paper [12], the
LMS algorithm of conventional E-BMFLC has been replaced by
Kalman filter (KF), resulting in better performance in comparison
to the conventional LMS-based E-BMFLC filter.

In this paper, we take the next step to overcome potential model
uncertainties and computational cost problems of the Kalman-based
BMFLC solutions. In particular, we propose a new tremor extrac-
tion filtering framework, which is developed by integration of multi-
ple models and reduced-order Kalman filtering with the E-BMFLC
algorithm. Referred to as the KFE-BMFLC, the proposed frame-
work is designed to further enhance the performance of pathological
tremor extraction through a three-step strategy. In other words, while
the concept of enhanced harmonic modeling and memory manipula-
tion are embraced in the proposed framework, several reduced-order
Kalman filters (RKFs), each matched to a subset of the state vari-
ables, are running in parallel. Finally, for each of these RKFs, mul-
tiple versions are incorporated to deal with the inherit uncertainty of
the constructed state-space model. To validate the performance of the
proposed filter, an online database of pathological hand tremors is
used. The database is available in [33] and has been used in the liter-
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ature to validate performance of other tremor extraction techniques,
such as the one proposed in [11]. Based on the validation tests con-
ducted in this paper, it is shown that the proposed KFE-BMFLC
technique is able to improve the performance of the filter developed
in [12] by representing an acceptable computational overhead for
real-time implementations.

2. PROBLEM FORMULATION

In this section, the fundamental concept of tremor extraction and the
E-BMFLC is briefly outlined. We consider the following model to
represent complete hand motion including the involuntary compo-
nents and voluntary components

ηp(k) = ηp−v(k) + ηp−i(k), (1)

where ηp(k) is the original hand motion, ηp−v(k) and ηp−i(k) are
the voluntary and involuntary (hand tremor) components, and k is
the time index. To model ηp(k), the total hand movement frequency
range should be divided into a finite number L = (fmax−fmin)

∆f

where fmax and fmin are the maximum and minimum given fre-
quencies, and ∆f is the minimum frequency difference. Conse-
quently, the total hand motion can be modeled as follows

y(k)=

L∑
r=0

[ar sin(2π(fmin+r∆f)k)+ brcos(2π(fmin+r∆f)k)] ,

(2)
where y(k) is the Fourier combiner representing ηp [6]. Let us define

xr(k) = (3){
sin(2π(fmin+r∆f)k), 0≤r≤L
cos(2π(fmin+((r−L)−1)∆f)k), L+1≤r≤2L+1

.

Considering Eq. (3), the model in Eq. (2) can be rewritten as

ηp(k) = wT
ηp(k)xηp(k), (4)

where T indicates transpose operator,

wηp(k)=[a0(k), a1(k), . . . , aL(k), b0(k), b1(k), . . . , bL(k)]T ,
(5)

and xηp(k) = [x0(k), x1(k) . . . , x2L+1(k)]T . (6)

The above-given model is then used in an embedded weight esti-
mation technique (which was originally based on LMS algorithm),
to first, estimate wηp(k) denoted by ŵηp(k), and then extract the
involuntary and voluntary components of motions.

To extract the involuntary motion, ŵηp(k) and xηp(k) should
be truncated based on the frequency range of the involuntary mo-
tion. Let us consider Nmin = (ωmin − fmin)/∆f and Nmax =
(ωmax − fmin)/∆f , where ωmin and ωmax are the minimum and
maximum frequency range of the involuntary motion. Accordingly,
the involuntary hand motion is estimated as follows

ηp−i(k) = xTηp−i(k)ŵηp−i(k). (7)

where

ŵηp−i(k)=[aNmin(k),. . ., aNmax(k),bNmin(k),. . ., bNmax(k)]T

xηp−i(k) (8)

=[xNmin(k), . . . , xNmax(k), xL+Nmin(k), . . . , xL+Nmax(k)]T .

Consequently, the estimation of complete hand movement can be
calculated as

η̂p(k) = xTηp(k)ŵηp(k), (9)

where η̂p(k) and ŵηp(k) are the estimates of ηp(k) and wηp(k),
respectively. The algorithm originally used in the design of the E-
BMFLC to calculate the estimates of the underlying coefficients (ar
and br) is the following LMS-based technique

ŵT
ηp(k) = ρŵT

ηp(k − 1) + 2µxηp(k)εηp(k), (10)

where εηp(k) = ηp(k)− η̂p(k), and ρ = δ√α, and δ = 1
∆T

Tp. In
addition, µ is the corrective gain, εηp indicates the estimation error,
and ρ is the dynamic memory windowing pole (in the Z-domain).
Also, Tp is the memory window width in the time domain; α is the
minimum amplification gain within the window and ∆T is the sam-
pling time. This technique was proposed to enhance the performance
of the filter in presence of non-periodic tremors. Details can be found
in Reference [6].

3. THE PROPOSED KFE-BMFLC

In this section, we develop the proposed KFE-BMFLC where KF-
based state estimation is used instead of the conventional LMS tech-
nique. In the following sub-sections, we first start by describing the
design for incorporation of the conventional KF, then extend it based
on reduced-order version of the Kalman filtering (RKF), and finally
describe the multiple-model formulation.

3.1. Kalman Filter

To improve the performance of the E-BMFLC filter, the algorithm
used for estimating the weights can be replaced by the KF. For this,
the complete hand motion (the observation model within the KF re-
cursion) is modeled as follows

y(k) = xTηp(k)wηp(k) + v(k), (11)

where v(k) is the observation uncertainty. The state space model is
constructed as follows with the state vector defined awηp(k)

wηp(k) = F (k)wηp(k − 1) +ψ(k), (12)

where F (·) denotes the state model, andψ(k) is the state uncertain-
ties. Within the context of tremor extraction, a random walk model
is considered as the state model [29] since no preceding informa-
tion can be considered for evolution of the state variables (wηp(k)),
i.e., F (k) , ρI , where ρ is the dynamic memory windowing pole
adopted from the conventional E-BMFLC, and matrix I is an iden-
tity matrix of appropriate dimension. Eqs. (11) and (12) construct
the required state-space model, which is used to estimate the Fourier
coefficients. Here, the state noise ψ(k) and the measurement noise
v(k) are considered as zero mean, uncorrelated, and white Gaus-
sian noise processes (v(k) ∼ N (0, R), and ψ(k) ∼ N (0,Q(k))).
TermsQ(k) and R are the state uncertainties covariance matrix and
measurement uncertainties covariance, respectively. It is worth men-
tioning that these statistics are unknown. Another common assump-
tion in the context of tremor extraction is to consider a constant and
pre-defined state noise covariance matrix (i.e., Q(k) , Q). Based
on the above modeling assumptions, the updated state estimation is

ŵηp(k|k) = E
{
wηp(k) | Y (k)

}
(13)

where E{·} denotes the mathematical expectation, and Y (k) is the
total past observations (including iteration k). To estimate ŵηp(k|k),
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primarily the predicted state ŵηp(k|k−1) = E
{
wηp(k) | Y (k − 1)

}
and the identified covariance matrix are computed as

ŵηp(k|k − 1) = ρ× ŵηp(k − 1|k − 1) (14)

P (k|k − 1) = ρ2 × P (k − 1|k − 1) +Q, (15)

where ρ is the memory manipulation factor. By considering y(k),
the updated state estimation ŵηp(k|k) and its corresponding error
covariance matrix P (k|k) are obtained as

K(k)=P (k|k−1)xTηp(k)
[
xηp(k)P (k|k−1)xTηp(k) +R

]−1

ŵηp(k|k) = ŵηp(k|k−1) +K(k)
(
y(k)−xTηp(k)ŵηp(k|k−1)

)
P (k|k) =

[
I −K(k)xηp(k)

]
P (k|k − 1). (16)

Here,K(k) is the Kalman gain that is updated at each time sample.
Let us represent ŵηp(k|k) as

ŵηp(k|k) = (17)

[a0(k|k), a1(k|k), . . . , aL(k|k), b0(k|k), b1(k|k), . . . , bL(k|k)]T .

Considering Eq. (8) and Eq. (18), we have

ŵηp−i(k|k) = (18)

[aNmin(k|k), . . . , aNmax(k|k), bNmin(k|k), . . . , bNmax(k|k)]T .

As a result the involuntary tremor can be estimated as

ηp−i(k|k) = xTηp−i(k)ŵηp−i(k|k). (19)

3.2. Reduced-Order Kalman Filtering

Instead of using the high-dimension KF (explained in Sub-section
3.1), the proposed reduced-order tremor extraction approach runs
NRO > 1 number of reduced-order state-space models. This can
be achieved by spatially decomposing the state mode given by
Eq. (12) as follows

w
(1)
ηp (k)

...
w

(l)
ηp (k)

...
w

(NRO)
ηp (k)


=



ρ(1)w
(1)
ηp (k − 1)

...
ρ(l)w

(l)
ηp (k − 1)

...
ρ(NRO)w

(NRO)
ηp (k − 1)


+



ψ(1)(k)
...

ψ(l)(k)
...

ψ(NRO)(k)


. (20)

Note that, Eq. (20) illustrates a state-space decomposition we refer
to it as reduced-order filtering. In the next step, NRO KFs are ap-
plied in parallel where the lth filter, for, (1 ≤ l ≤ NRO), provides
localized state estimates, i.e., ŵ(l)

ηp (k|k) = E{w(l)
ηp (k) | y(l)(k)}.

The measurement model combines the localized KFs since only one
measurement y(l)(k) is obtainable at each time step. The lth local-
ized KF performs the prediction as

ŵ(l)
ηp (k|k − 1) = ρ(l) × ŵ(l)

ηp (k − 1|k − 1) (21)

P (l)(k|k − 1) = [ρ(l)]2 × P (l)(k − 1|k − 1) +Q(l), (22)

where ρ(l) is the localized memory manipulation factor. It should be
noted that, the localized memory manipulation factors can be vary
from one sub-filter to another based on the frequency content which
is estimated by the lth KF. By considering y(l)(k), the updated state

estimate ŵ(l)
ηp (k|k) and the corresponding error covariance matrix

P (l)(k|k) are computed as

K(l)(k) =

P (l)(k|k−1)xlηp(k)
[
xTlηp(k)P (l)(k|k − 1)xlηp(k)+R(l)

]−1

ŵ(l)
ηp (k|k) =

ŵ
(l)
ηp (k|k − 1) +K(l)(k)

(
y(l)(k)− xTlηp(k)ŵ

(l)
ηp (k|k − 1)

)
P (l)(k|k) =

[
I −K(l)(k)xTlηp(k)

]
P (l)(k|k − 1). (23)

Here, K(l)(k) is the Kalman gain that is updated at each time step.
In order to estimate ŵηp(k|k), we need to combine ŵ(l)

ηp (k|k)s, as

ŵηp(k|k) = (24)

[a0(k|k), a1(k|k), . . . ,aL(k|k), b0(k|k), b1(k|k), . . . , bL(k|k)]T.

Considering (8) and (24) we have

ŵηp−i(k|k) = (25)

[aNmin(k|k), . . . , aNmax(k|k), bNmin(k|k), . . .,bNmax(k|k)]T.

As a result, considering Eqs. (7), (9), and (25), the estimated invol-
untary motion can be calculated as follows

ηp−i(k|k) = xTηp−i(k)ŵ(k|k)ηp−i . (26)

The computational overhead of the proposed RKF approach for
tremor extraction is approximately of O(3(NW /NRO)2) consider-
ing the localized KFs running in parallel, where NW is dimension
of the state vector and NRO is considered as the number of reduced-
orders. The above number is based NRO = 3, which is considered
by intuitively dividing the overall state into low frequency, middle
frequency and high frequency components. Accordingly, there is a
computational cost saving in comparison with the Kalman-based
E-BMFLC with the computational complexity of O(3N2

W ) [32].

3.3. Multiple Adaptive Reduced-Order Kalman Filtering

The main drawback of the RKFs, introduced in Sub-section 3.2, is
the inherit uncertainty of the underlying state-space model devel-
oped in Eqs. (11) and (12). In other words, Terms ρ(l),Q(l), andR(l)

are assumed known and fixed through out the filtering iterations. To
address this issue, one solution is to keep the localized manipula-
tion factor ρ(l), for (1 ≤ l ≤ NRO), fixed a-priori and adaptively
learn/compute the noise statistics using adaptive extensions of the
KF [35]. Alternatively, we propose to use multiple adaptive mod-
els for each of the original RKFs to not only consider the effects of
localized noise statistics but also consider deferent localized manip-
ulation factors.

It should be mentioned that the proposed framework is com-
posed of a bank of Nf > 1 filters for each of the NRO RKFs devel-
oped in the previous sub-section. Each RKFs is initialized based on
a different set of initial parameters depending on the frequency band
that the RKF is estimating. All individual RKFs run in parallel and
independently, each producing their own estimate ŵ(l)

iηp
(k|k) and co-

variance matrix P (l)
i (k|k), for (1 ≤ i ≤ Nf ), and (1 ≤ l ≤ NRO).

The localized state estimates associated with each RKF are fused
through a collapsing step [22, 32] which forms the optimal single
Gaussian distribution in the mean-square error (MSE) sense with
mean ŵ(l)

ηp (k|k) and covariance matrix P (l)(k|k). By utilizing the
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Fig. 1. The tremor truncation in the frequency domain. The red part of the
signal represents the involuntary hand motion regarding a PD patient.

parameter γ(l)
i (k|k − 1), the weights ω(l)

i (k|k) can be updated lin-
early and in an autoregressive way. This value illustrates the confi-
dence amount corresponding to the ith model constructed for the lth

RKF at each time step. The innovation residual z(l)
i (k|k − 1) and

innovation covariance S(l)
i (k|k − 1) provide the prediction error of

each filter and can be defined as

z
(l)
i (k|k − 1) = w

(l)
iηp

(k)− ŵ(l)
iηp

(k|k − 1) (27)

S
(l)
i (k|k − 1) = [x

(l)
iηp

(k)]TP
(l)
i (k|k − 1)x

(l)
iηp

(k) +R
(l)
i (28)

which are deployed for the calculation of γi(k|k − 1). Accordingly,
the weights ωi(k|k) can be computed as follow

γ
(l)
i (k|k − 1) = det(S

(l)
i (k|k − 1))−

1
2 (29)

× exp

[
−1

2
[z

(l)
i (k|k − 1)]T [S

(l)
i (k|k − 1)]−1z

(l)
i (k|k − 1)

]
Θ

(l)
i = γ

(l)
i (k|k − 1)ω

(l)
i (k − 1|k − 1) (30)

Furthermore, the normalized weights can be represented as follows

ω
(l)
i (k|k) =

Θ
(l)
i∑n

j=1 Θ
(l)
j

. (31)

Finally by fusing all the n estimates we will have the final estimates

ŵ(l)
ηp (k|k) =

n∑
i=1

ω
(l)
i (k|k)ŵ

(l)
iηp

(k|k) (32)

P (l)(k|k) =

n∑
i=1

ω
(l)
i (k|k)× (33)[

P
(l)
i (k|k)+{ŵ(l)

ηp (k|k)−ŵ(l)
iηp

(k|k)}{ŵ(l)
ηp (k|k)−ŵ(l)

iηp
(k|k)}T

]
This completes the definition of multiple adaptive reduced-order
Kalman filter.

4. EXPERIMENTAL RESULTS

In this section, the evaluation of the proposed KFE-BMFLC filter
is provided. The dataset used in this evaluation has been published
online by Motus Bioengineering Inc. [33]. This dataset involves real
measurements of hand tremor in PD patients. Regarding the hand
movement estimation, the actual tremor signal is extracted from the
complete hand movement using an offline post-processing method
introduced by Atashzar et al. in [6]. The result is demonstrated in
Fig. 1, where the red part indicates the involuntary hand motion in
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Fig. 2. NRMSE sensitivity analysis regarding multiple adaptive reduced-
order Kalman filtering based on the variation of Q(l)

1 and R
(l)
1 .

Table 1. Accuracy evaluation of KFE-BMFLC and E-BMFLC for the
extracted tremor over four different tremor data. It is observed that the
KFE-BMFLC improves estimation accuracy in comparison with E-BMFLC.

Estimation Methods NRMSE 1 NRMSE 2 NRMSE 3 NRMSE 4
KFE-BMFLC 0.0426 0.0538 0.0568 0.0517

E-BMFLC 0.0551 0.0603 0.0654 0.0582

the frequency domain. The extracted actual tremor is considered as
the reference for evaluation of the online technique proposed in this
paper. In this experiment, the KF is reduced into three subsystems,
i.e., NRO = 3. Accordingly, one localized KF is allocated to low fre-
quencies, one is allocated to the frequencies of the considered tremor
(i.e., 6−14Hz) and one is allocated to high frequencies. On the other
hand, there are three RKFs which are running in parallel. Moreover
the frequency difference has been considered as ∆f = 0.5Hz.

The Normalized Root Mean-Square Error (NRMSE) is used
in this paper to measure the estimation inaccuracy. The NRMSE
is defined as NRMSE = RMSE/(smax − smin), RMSE =√

(
n∑
k=1

(ŝ(k)− s(k))2)/n. Here, s(k) is the input tremor signal,

ŝ(k) is the estimated tremor, and n is the number of samples. Terms
smax and smin represent the minimum and maximum value of the
observed signal. The comparisons is performed between the pro-
posed KFE-BMFLC and the E-BMFLC. The summary of the results
for 4 subjects are provided in Table 1. In addition, in Fig. 2, the
sensitivity analysis regarding the multiple adaptive reduced-order
Kalman filtering is represented based on the variation of Q(l)

1 and
R

(l)
1 . It is observed that the proposed KFE-BMFLC has enhanced

the performance of the E-BMFLC.

5. CONCLUSION
In this paper, a new estimation framework is proposed to extract
pathological hand tremor by integration of the multiple-model and
reduced-order Kalman filtering with recently developed E-BMFLC
technique. Referred to as the KFE-BMFLC, the goal is to increase
the accuracy in estimation of involuntary hand motions while re-
ducing the overall computational complexity within the context of
tremor extraction, which consists of an extensively large number of
states. The proposed KFE-BMFLC framework is capable of reduc-
ing the computational overhead of the KF-based implementation of
E-BMFLC by decomposing the overall large scale estimation prob-
lem into several lower dimensional sub-systems. Besides, the pro-
posed KFE-BMFLC framework deals with the inherit structural un-
certainty of the constructed reduced-order state-space model by uti-
lization of multiple-models adaptive estimation techniques.
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