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ABSTRACT 

 

We propose a method for estimating blood pressure (BP) 

non-invasively from electrocardiogram (ECG) and 

photoplethysmogram (PPG) signals. This method has 

potential to be used as a continuous form of BP estimation.  

Along with these signals, to our knowledge, for the first time 

in the BP measurement studies, we included accelerometric 

and gyroscopic signals from a wearable device to compensate 

for motion during continuous BP prediction. Our prediction 

model is a long-short-term-memory (LSTM) architecture of 

a recurrent neural network (RNN), which accommodates the 

multiscale temporal dependency between the sequential raw 

signal values and the corresponding systolic and diastolic BP 

values. We performed a study with 50 healthy volunteers. 

The mean difference ± standard deviation (SD) of the RNN-

based approach were 0.02±4.8 for SBP and 1.5±3.7 for DBP 

in seated position & 2.6±6.0 for SBP and 2.7±4.5 for DBP 

while walking. These values meet current validation standard 

requirements for measurement accuracy. Our experiments 

also demonstrate that the proposed RNN-based approach 

outperformed the classical linear regression model for BP 

prediction.     

 

Index Terms— Blood pressure(BP), 

electrocardiogram(ECG), photoplethysmogram(PPG), Pulse 

transit time(PTT), accelerometer, gyroscope, cross-

correlation, recurrent neural network(RNN), long-short-term 

memory(LSTM).  

 

1. INTRODUCTION 

 

High blood pressure is the leading cause of death and 

disability in the world, affecting nearly 1.5 billion adults [1, 

2]. High blood pressure leads to many complications, 

including stroke, heart failure, kidney disease and coronary 

disease [3, 4]. Development of an accurate, continuous, and 

non-invasive BP measurement method is necessary for 

hypertension diagnosis and management [5].  

 

Recently, various machine learning algorithms have been 

employed to improve medical diagnosis, including predicting 

the risk of stroke and coronary heart diseases [6, 7]. 

Prediction models based on pulse transit time (PTT) are have 

been used for continuous and non-invasive BP estimation. 

PTT is the time the pulse pressure waveform takes to 

propagate through the length of the arterial tree [8]. PTT can 

also be defined as the time lag between the R-peak of the 

ECG signal and the peak of the PPG signal, when measured 

within the same cardiac cycle [9]. 

 

The classical PTT method is comparatively simple, but it fails 

to maintain the prediction accuracy over a long period of time 

and during motion [11, 15]. Thus, to improve on the classical 

PTT-based prediction, along with the ECG and the PPG 

signals, for the first time to our knowledge, we use signals 

from accelerometers and gyroscopes to predict BP. 

Accelerometers and gyroscopes have been widely accepted 

as useful and practical sensors for wearable devices to 

measure and assess physical activity [10]. In this study, 

accelerometric and gyroscopic values along with ECG and 

PPG values are collected from a wearable device called 

BioRadio (Great Lakes Neurotechnologies, Valley View, 

OH). 

 

To make a prediction model, we used recurrent neural 

networks (RNNs), which can effectively learn the multi-

timescale dependencies from a sequential time series of BP 

values. For this study, deep many-to-one and many-to-many 

long short-term memory network (LSTM) were used. These 

networks do not require any pre-processing of the input 

sequences. Thus, raw signals outputted from the BioRadio 

device were used as inputs to LSTM. The neural network is 

able to discover the latent correlation between different time 

series and learn from the dependency and predict the target 

values. This problem can be framed as a multivariate 

temporal sequence prediction problem and an appropriate 

application of biomedical signal processing. We used 

sequence-to-sequence learning framework to solve this 

problem [12]. 

 

2. BP FROM PTT-BASED LINEAR REGRESSION 

MODEL  

 

The PTT-based model was first derived by Weltman et.al. in 

1964 [13]. In the present study, synchronized ECG and PPG 
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signals were acquired from the BioRadio device and then a 

customized algorithm was designed to compute PTT 

automatically [15]. Cross-correlation between the adjacent 

peak points of ECG and PPG signals in the same cardiac cycle 

was used to compute PTT [14]. The PPG signal was smoother 

than the ECG signal (i.e. the number of outliers was less than 

that of the ECG signal). For this reason, sparsification of the 

PPG signal was performed by computing a moving window 

maximum on the PPG signal [15]. After detecting the 

maxima, only these maximum values of the PPG signal were 

used for further processing. This process converts the PPG 

signal into a very sparse signal that ultimately increased the 

accuracy and the efficiency (computational time) of the 

proposed algorithm [15]. 

 

In healthy subjects, the PTT value is typically between 70 to 

200 ms [16]. Therefore, from the automated PTT calculation, 

detection of abnormal cases is also possible. To check the 

accuracy of our proposed method, PTT values were 

compared to the reference standard, which was defined as 

manual PTT calculation (i.e. calculating the peak to peak 

distance of the ECG and PPG signals manually). The 

automated and manual PTT values were compared to 

measure the accuracy of this method. The observed errors of 

PTT measurement were within 1% of the manual 

measurement.  

 

The mathematical relationship between PTT and BP has 

previously been studied using physical models and empirical 

regression models which are based on the Moens–Kortweg 

and Bramwell–Hill equations, using a function to relate the 

elastic modulus to BP [17].  

 

𝐵𝑃 =  
𝑎

𝑃𝑇𝑇
+ 𝑏                                         (1) 

 

BP values were calculated in five different positions 

(recumbent, seated, standing, walking, cycling) and the 

accelerometric and gyroscopic values were incorporated 

along with PTT data (to remove motion artifacts in case of 

walking and cycling) into the linear model in eq. (1) where 

the unknown constants 𝑎 and 𝑏 are subject dependent.  

 

3. BP FROM RECURRENT NEURAL NETWORK 

 

3.1. RNN model 
 

RNNs are the family of neural networks useful for processing 

temporal sequential data and have been successfully used in 

various sequence learning tasks to model long-term 

dependencies [18, 19]. In particular, the RNNs based on 

LSTMs can capture long range dependencies and nonlinear 

dynamics. LSTMs were originally introduced in [20] and 

subsequently, trained successfully to perform supervised 

machine learning tasks with sequential input and output. 

Neural networks have been applied to medical problems and 

here LSTMs are applied to multivariate clinical time series 

prediction. We present our deep LSTM network shown in 

Fig. 1 for BP prediction from multiple temporal sequences. 

These types of data are used as the input to the hidden layer 

in the recurrent structure. In this way, the dependency among 

the BP measurements will be embedded into the network 

structure and the RNNs can use their memory information to 

process sequences of inputs. RNN and its variants like LSTM 

are powerful dynamic systems for modelling sequential data 

[21]. Unlike traditional RNN, LSTM replaces the activation 

function of the neurons to a unit with an ingenious inner 

structure called LSTM [20]. LSTM doesn't have the 

vanishing gradient problem and can store the memory of 

thousands of past discrete time steps. The following 

equations represent the process to perform parameter updates 

[18]. 

 

𝑓(𝑡) =  𝜎( 𝑊𝑥𝑓𝑥(𝑡)  + 𝑊ℎ𝑓ℎ1(𝑡 − 1) + 𝑏𝑓  )       (2) 

 

𝑖(𝑡) =  𝜎( 𝑊𝑥𝑖𝑥(𝑡) +  𝑊ℎ𝑖ℎ1(𝑡 − 1) +  𝑏𝑖  )         (3) 

 

𝑜(𝑡) =  𝜎(𝑊𝑥𝑜𝑥(𝑡) +  𝑊ℎ𝑜ℎ1(𝑡 − 1) + 𝑏𝑜 )        (4) 

 

𝑐𝑖𝑛(𝑡) = tanh(𝑊𝑥𝑐𝑥(𝑡) + 𝑊ℎ𝑐ℎ1(𝑡 − 1) + 𝑏𝑐𝑖𝑛
)     (5) 

 

𝑐(𝑡) = 𝑓(𝑡)  ∗   𝑐(𝑡 − 1) +  𝑖(𝑡)  ∗   𝑐𝑖𝑛(𝑡)           (6) 

 

ℎ1(𝑡) = 𝑜(𝑡)  ∗ tanh(𝑐(𝑡))                        (7) 

 

In these equations, 𝜎 represents the sigmoid function. The 

input, forget and output gates are denoted by 𝑖, 𝑓 𝑎𝑛𝑑 𝑔 

respectively and 𝑐𝑖𝑛 is the input of the LSTM cell. 𝑡𝑎𝑛ℎ is the 

activation function of the input 𝑐𝑖𝑛. Here ∗ is the Hadamard 

(element-wise) product. ℎ1(𝑡 − 1) represents the previous 

output of the LSTM unit. In eqn. (6) the current state 𝑐(𝑡) is 

calculated from the previous state 𝑐(𝑡 − 1) and the gates in 

the LSTM unit. The formula in eqn. (7), ℎ1(𝑡) is the output 

of unit at the current time point 𝑡.   

 

 

 
 

Figure 1: LSTM many-to-one architecture 
 

A deeper RNN architecture has stronger learning capability; 

thus, with limited training data, it is difficult to train such a 

network without overfitting. We applied dropout to mitigate 
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the overfitting issue. The RNN model summary, the layer 

types and the number of parameters used in each layer are 

described in Fig 2. 

 

 

 
 

Figure 2: RNN model summary and the parameters  
 

 3.2. Training details of the LSTM network 

 

We created our LSTM layer with different numbers of 

neurons (32, 64, 128) and it performed comparatively well 

with 32 neurons in the first hidden layer and 1 neuron in the 

output layer to predict BP values. The last layer is a dense 

layer and we used mean squared error (MSE) loss function 

and Adam version of the stochastic gradient descent [22]. The 

model was trained with 50 epochs and a batch size of 64 

examples with learning rate of 0.001. All the LSTM-

parameters were initialized with the uniform distribution 

between -0.1 and 0.1. A dropout of 0.30 was applied to 

prevent overfitting. The MSE loss curves (training and 

validation curves) with different epochs are shown in Fig 3. 

All the experiments with the neural network were 

implemented using Keras API [24] with TensorFlow and on 

a double NVIDIA GeForce GTX 1080. 

 

 

 

 
 

Figure 3: Loss- MSE vs Epoch curve for training and validation 

for the LSTM   

4. THE PROTOCOL OF DATA COLLECTION 

 

4.1. Calibration 
 

During the calibration process, each subject was attached to 

three ECG electrodes and a pulse oximeter in the seated 

position. Here calibration means entering the BP value that 

corresponds to a known input = (ECG, PPG, PTT, 

Accelerometric, Gyroscopic values) that enables the 

derivation of a subsequent BP when a future input data points 

are measured. Data recording and streaming from the 

BioRadio were initiated. Four cuffed BP measurements were 

taken after the data extraction and used for calibration.  

 

After calibration, input signals were captured over 20 

heartbeats; this included 10 beats taken immediately prior to 

initiating the cuffed measurement and 10 beats taken 

immediately after the cuffed measurement had ceased.  

Measurements were performed in 5 different scenarios 

(recumbent, seated, standing, walking at a regular pace and 

cycling at a comfortable pace). The proposed algorithms were 

used to predict BP and were compared to the actual 

oscillometric BP measurement. 

 

5. THE DATASET 

 

In our study, the data from 50 healthy subjects (24 men and 

26 women) with no prior history of hypertension were 

recorded. Separate datasets for training and testing were used. 

The training dataset was collected with the subjects in a 

seated position and the test dataset with the subjects seated, 

lying down, standing, walking and cycling. We analyzed the 

five different positions separately. The number of data points 

or time steps collected during training was around 60000 and 

the number of features was 9 (i.e. ECG, PPG, PTT, 3 

Accelerometric and 3 Gyroscopic values for three axes, 

respectively). The LSTM was trained with different batch 

sizes: 64, 128, 256, 512. The baseline characteristics of the 

participants were as follows: mean age 30.2 ± 11.9 years 

(range 18-62), weight 67.6 ± 12.5 kg, height 169.4 ± 8.7 cm, 

body mass index 23.5 ± 4.1 kg m-2, and mid-arm 

circumference 29.0 ± 4.0 cm. The reference standard BP was 

measured using a validated oscillometric device (A&D 

Medical UA-651BLE) [23].  

 

6. EXPERIMENTAL RESULTS AND DISCUSSION 

 

The results are compared for both linear model and RNN with 

and without accelerometric and gyroscopic values to show 

the impact of incorporating these motion detectors for BP 

prediction. Root-mean-squared-error (RMSE) values and the 

mean & standard deviation (SD) of error values were 

calculated between the reference standard and estimated 

systolic and diastolic BP values (SBP and DBP respectively) 

from both the linear and non-linear models. 
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6.1. Results from Linear Model 

 

Table 1.  
Comparison of RMSE values between the reference standard and 

estimated BP and Mean ± SD of the error using Linear 

Regression with and without accelerometric & gyroscopic data 

 

 Recumbent Seated Standing Walking Cycling 

Without 

accl & 

gyro 

(SBP & 

DBP) 

5.74 5.70 5.14 10.42 11.01 

5.22 4.38 6.12 8.39 7.84 

With  

accl & 

gyro 

(SBP & 

DBP) 

7.19 8.04 6.16 7.47 8.15 

6.08 5.62 5.90 7.01 5.38 

Without 

accl & 

gyro 

(SBP & 

DBP) 

-0.9 

± 5.7 

-0.2 

± 5.8 

-0.3 

± 5.2 

2.0 

± 10.3 

3.3 

± 10.7 

-3.6 

± 3.8 

1.5 

± 4.2 

3.8 

± 4.8 

2.0 

± 8.2 

1.8 

± 7.8 

With  

accl & 

gyro 

(SBP & 

DBP) 

-0.8 

± 7.2 

-1.1 

± 8.0 

-0.4 

± 6.2 

-2.6 

± 7.5 

3.3 

± 7.5 

-3.7 

± 4.8 

2.5 

± 5.0 

3.3 

± 4.9 

1.6 

± 6.8 

3.8 

± 5.1 

 

 

6.2. Results from RNN-LSTM 

 

Table 2.  
Comparison of RMSE values between the reference standard and 

estimated BP and Mean ± SD of the error using RNN with and 

without accelerometric & gyroscopic data 

 

 Recumbent Seated Standing Walking Cycling 

Without 

accl & 

gyro 

(SBP & 

DBP) 

4.40 4.92 4.01 8.05 7.93 

4.75 4.18 5.37 5.35 5.60 

With  

accl & 

gyro 

(SBP & 

DBP) 

4.40 4.83 3.88 6.54 7.54 

4.57 3.95 4.90 5.22 4.81 

Without 

accl & 

gyro 

(SBP & 

DBP) 

-0.4  

± 4.4 

-0.5 

± 4.6 

-0.3 

± 4.1 

2.6 

± 7.8 

3.0  

± 7.8 

-3.4 

± 3.4 

1.6 

± 4.0 

3.5 

± 4.1 

2.9 

± 5.3 

1.8 

± 5.8 

With  

accl & 

gyro 

(SBP & 

DBP) 

-0.2 

± 4.2 

0.02 

± 4.8 

-0.2 

± 3.9 

2.6 

± 6.0 

2.9 

± 6.4 

-3.2 

± 3.3 

1.5 

± 3.7 

2.5 

± 4.2 

2.7 

± 4.5 

2.0 

± 4.4 

 

From the above results it is clear that the RMSE values for 

the linear model reported in Table 1 are far less accurate than 

the RMSE for the neural network in Table 2. The same is true 

for the mean and the standard deviations (in mmHg) in Tables 

1 & 2 for the neural network. But the performance of the 

proposed algorithm improved substantially when the 

accelerometric and gyroscopic values were incorporated into 

the models. 

For the continuous BP prediction problem, linear regression 

model works but not as well as RNN with the LSTM 

architecture. So far, our proposed LSTM model achieved a 

reasonable accuracy in case of posture and activity using the 

data captured from the motion sensors.     

 

 

7. CONCLUSION AND FUTURE WORK 
 

In this paper, we propose that the RNN models can predict 

continuous BP sequences from physiological signals like 

ECG, PPG and other parameters like PTT in posture and 

activity. We performed a study involving 50 healthy 

volunteers. The captured signals in the seated or standing 

positions are relatively comparable to oscillometric BP; 

however, walking and cycling introduce baseline noise into 

both the ECG & PPG signals and have varying physiological 

states from resting, making it more difficult to accurately 

estimate the corresponding BP values. To predict BP more 

accurately during activity, here we incorporated the 

accelerometric and gyroscopic values. The BioRadio’s 

accelerometer measures gravitational force (also known as g-

force) and the gyroscope measures angular velocity. Both of 

these sensors take measurements in three planes - x, y and z. 

The motion artifacts that affect the ECG & PPG signals are a 

known, yet unavoidable issue caused by activity. After 

including accelerometer and gyroscope data, we achieve 

significant boost in the accuracy for all positions. According 

to the accepted threshold for accuracy in the field of blood 

pressure measurement in [25], for mean of 2.6 mmHg, the 

maximum permissible SD is 6.43 mmHg, which is 6.0 while 

walking and for mean of 2.9 mmHg, the permissible SD is 

6.3 mmHg, which is 6.4 while cycling in our study. It can be 

stated that the difference between the estimated BP from 

RNN and the reference standard was less than the accepted 

threshold in all five scenarios. The deep learning based 

method appears sufficiently accurate not only in motionless 

conditions (recumbent, seated, standing) but also for walking 

and cycling, where motion artifacts are present. Also, the 

training set contains data collected in motionless condition 

while, in the test set we have data in presence of motion as 

well. RNN also predicted the new data quite well.   

In the future, the current model should be further developed 

such that it learns the multi-scale dependency more 

accurately and performs multi-tasking by predicting SBP, 

DBP and mean blood pressure (MBP) in parallel. Such 

auxiliary training could be applied during training phase and 

could improve the overall performance and accuracy. 
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