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ABSTRACT

Electrocardiography (ECG) measured using wearable wire-
less sensors is already commonly used for several years, as
one of the products of the emerging Telemedicine field, which
is one the main branches in eHealth applications. In this
work we address the problem of missing samples recovery of
such ECG (digital) signals, resulting from temporally-local
communication dropouts. We propose a new model for the
ECG signal based on its conspicuous quasi-periodical char-
acteristics in short time intervals, along with a compatible es-
timation procedure tailored to the proposed model. We ex-
tend the autoregressive (AR) model, previously proposed by
Prieto-Guerrero et al., to a cyclostationary AR model, and
our proposed estimation scheme incorporates a first phase of
model parameters estimation, followed by a Linear Minimum
Mean Squared Error (LMMSE) estimation phase of the miss-
ing samples. We demonstrate significant improvement com-
pared to the AR method in simulation experiments using real
ECG data.

Index Terms— ECG, missing samples recovery, cyclo-
stationary, LMMSE estimation.

1. INTRODUCTION

Missing samples recovery is a common well-known prob-
lem which was addressed in various contexts such as audio
restoration [1, 2], image completion [3, 4], data recovery
in electricity distribution systems [5], biomedical applica-
tions [6, 7] and more. In the context of biomedical applica-
tions, the interest in eHealth applications has increased signif-
icantly in recent years [8§—10], and in particular also in a field
termed Telemedicine, which is the use of telecommunication
and information technology to provide clinical health care
from a distance. Telemedicine can be beneficial to patients in
remote regions or in case of emergencies, where reliable real-
time monitoring is of great interest. One form of telemedicine
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is performing an Electrocardiography (ECG) with wearable
wireless sensors using some wireless communication link,
e.g., WiFi. The ECG signal is sampled and transmitted to a
near by computing unit, from which it is sent to the desired
destination (e.g., to an emergency medical center) via some
other communication link (e.g., cellular or satellite). During
the transmission process of the digital ECG signal, dropouts
in communication links might occur, and in some case the
Transmission Control Protocol (TCP) will allow packet loss
for the sake of lower latency. In such cases, where the TCP
is not modified especially for the ECG transmission, con-
sidering that an accurate diagnostic by a physician depends
very much on a clear readable ECG signal, possible losses
in transmission may become crucial. To this end, missing
samples recovery of the ECG signal is clearly of interest and
was previously addressed by Prieto-Guerrero et al. in [11]
and later in [12], where a reconstruction method for ECG sig-
nals was proposed, based on autoregressive (AR) modeling.
In this paper, we propose an enhanced model for the ECG
signal and accordingly a different estimation procedure of
the missing samples. The model relies on the observed ECG
signal quasi-periodical characteristics in short time intervals,
which can be easily seen in Fig. 1, presenting two different
typical ECG signals as representative examples. Therefore, a
suitable model would encompass both its random and quasi-
periodical characteristics. One plausible option for such a
model is an AR cyclostationary random process, which will
preserve the advantage of correlations to near by samples and
will also enjoy the benefit of the periodical statistical prop-
erties. In this paper we consider such a model along with a
compatible non-iterative efficient estimation procedure, and
demonstrate its superiority over the previously suggested AR
method.

The rest of this paper is structured as follows. In Sec-
tion II we propose a model for the ECG signal and formulate
the problem of missing samples recovery in this context. In
Section III we present the proposed estimation procedure for
the recovery of the missing samples. Comparative simulation
results on real ECG data are presented in Section I'V, and Sec-
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Fig. 1: Examples of two ECG signal taken from the MIT-BIH
Arrhythmia Database. (a) ECG 100 (b) ECG 200.

tion V is devoted to conclusions.

2. THE PROPOSED MODEL AND PROBLEM
FORMULATION

Due to the quasi-periodical characteristics of the ECG sig-
nal, we propose to model it as an AR process generated by a
cyclostationary (uncorrelated) driving-noise. More formally,
denote x[n] as the discrete-time signal which represents the
ECG signal samples. Thus, x[n] is considered as an AR pro-
cess of (known) order p satisfying

x[n] = —Zak-x[n—k}—i—v[n], (1)
k=1

with

v[n] = 4/d[n] - wn], 2)

where wn] is a zero-mean unit variance white noise, {a; };_,
are the unknown deterministic AR parameters and d[n] is
some unknown deterministic periodic (positive) function,
ie,Vn : dn] = dn+T] > 0,T € Z\ {1}. Note that
in the proposed model, the cyclic period T is considered an
unknown deterministic parameter as well. Clearly, v[n] is a
cyclostationary random process, which serves as the driving-
noise of the process z[n].

The measured ECG signal is represented by the vector of
samples x € RV*1, where its n-th element is (z),, = z[n].
We assume that K € Z consecutive samples are miss-
ing in a known position. In addition, we also assume

931

K < T. To this end, denote ™ = [ygre 0" ygost} € RV,
where & € RE*L is the vector of missing samples and
Ypre € RN1X17ypost € RN2x1 (N1 + N2 = N — K) are
the vectors of available measurements before and after the
missing samples interval, respectively (where (-)T denotes
the transpose). Thus, our goal is to estimate the vector
of unknown samples 6 from the vector of measurements
y" £ [Ype Ype] € RN=K_In the following section we
propose a non-iterative estimation procedure by which the
necessary deterministic model parameters are estimated first,
and based on these estimated parameters, the missing samples
are then estimated according to the Linear Minimum Mean
Square Error (LMMSE) criterion.

3. THE PROPOSED METHOD

Given the vector of measurements y, estimate the vector of
missing samples @ according to the following procedure:

1. Estimate the first p+ 1 autocorrelation lags of [n] from
the available samples y using ordinary correlation esti-
mates;

2. Using the estimates from step 1, estimate the AR pa-
rameters (of order p) by solving the Yule-Walker equa-
tions (e.g., [13]);

3. Using the estimated AR parameters from step 2, filter
the vector [y, 07 yhy] € RN (where 0 € RF*!
is the all-zeros vector) with the corresponding Finite
Impulse Response (FIR) inverse AR filter to obtain the
estimated driving-noise vector, denoted by ;

4. Using the Discrete Fourier Transform (DFT) of the
squared driving-noise sequence 2 £ ¥ o ¥, where
o denotes the Hadamard (element-wise) product, es-
timate the cyclic period 7' by the reciprocal of the
(non-DC) highest peak-location multiplied by the DFT
length (and rounded to an integer); denote this estimate
as T}

5. Based on T, estimate d [n], the time-varying variance of
the driving-noise v[n], by averaging all the full periods
(only) of length T of ©* and then concatenating the es-
timated period as necessary to obtain the total length;
denote this sequence as d[n];

6. Using the results of step 2 and 5, construct the esti-
mated covariance matrix of a: notice that according to
our model (neglecting edge-effects)

Tx=D2w — C..2F [mmT] = I‘leI‘fT,

3)

where D? € RVXN js a diagonal matrix whose diag-
3 _ NxN :

onal elements are (D?)m =4/dn, T € R is

a (Toeplitz) matrix represéntation of the FIR (inverse
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Fig. 2: (a) The estimated driving-noise v = [z, obtained by
filtering ECG 100 using the FIR inverse AR filter, obtained
from its estimated AR parameters. (b) The estimated marginal

~—1
PDF fy (w) of w = D *® obtained from ECG 100.

AR) filter which was used in step 3, w € RM*1 is
the vector representation of the white noise w(n] (with
(w),, = w[n]), Ca is the covariance matrix of x, and

()~ T denotes the inverse of the transpose. Thus,

P

C..2T DT “)

where E*M, T and D are the estimates of C..,T and
D (based on y), respectively.

7. Using the (symmetric) permutation matrix IT € RY*
such that zT 2 2TrIt = [HT yT], construct the

LMMSE estimate of 8 from y based on 6’m (e.g.,[14D

~ ~ ~-—1 ~—1~

0 = CGyny y=—A, Aoyy, Q)
where
—~ —~ -1 o~ —~
C éHC 1l—IT A |:gee gey} AL {éee /A'\By:|.
= o Cye C'yy A"ye A"yy
(6)

Before we proceed to demonstrate the proposed method’s per-

e We assume that the given signal (with missing samples)

contains at least a few cyclic periods, i.e., T' < N. This
is assumed in order to obtain a “good” estimate of the
cyclic period.

Although our method is only based on second-order
statistics, it may be reasonable to assume that the
driving-noise, and therefore also the ECG signal, are
Gaussian distributed. This assumption was examined
on real data and appears to be rather plausible. Fig.
2a shows an example of an ECG signal (ECG 100)
which was filtered by the FIR inverse AR filter, ob-
tained from its estimated AR parameters. It is readily
seen that the filtered signal ¥ exhibits quasi-periodical
characteristics. In addition, it can be easily seen from
Fig. 2b, presenting the estimated Probability Density
Punction (PDF) of the signal w = D_%'b, that at least
its marginal distribution is approximately Gaussian.
Although the marginal Gaussianity does not necessar-
ily imply full Gaussianity of the entire process, if the
ECG signals are indeed approximately Gaussian then
our LMMSE is approximately the MMSE.

In step 7, ideally, we would take all the available mea-
surements to estimate the missing samples. However,
sinceA we need to compute the estimated covariance ma-
trix C., by matrix multiplications, this would become
computationally expensive for “very long” vectors.
Thus, we use all the samples in y for the model pa-
rameters estimation (which is relatively cheap in the
sense of computational load), and we use only the M
“closest” samples to @ for the estimation of the missing
samples, where M € Z is a (tunable) predefined pa-
rameter of the algorithm. Of course, if computational
resources are abundant, all entries of y may be used.

In order to mitigate initial conditions edge effects of
the filtering process in step 3, we set 9[n] = F [v[n]] =

0,vne{l,...,p+1}U{N1+1,.... Ny + K+p+1}.

Notice that computing the inverse of (AJW directly is
very costly when N is large (recall we assume K <
N). However, we may compute the inverse of 6” ef-
ficiently, since from (3) we have

c!l=r'Dp'r, (7

which means we only have to compute the reciprocal
values of the sequence lying on the diagonal of D,

i.e., (d[n])”". Once we obtain C.. A;el is also com-

xx

putationally (relatively) cheap, since its dimension is
K x K. Thus, in practice, we use the right hand side
formula of (5).

formance compared to another ECG missing samples recov- ~ We now turn to assess the performance of the proposed
ery method, we would like to note the following: method on real ECG data.
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Fig. 3: Averaged local SNR of missing samples recovery versus K for three different ECG signal recordings (102, 215, 228)
taken from the MIT-BIH Arrhythmia Database. It is clearly seen that the proposed method attains significantly higher SNR for
each of the examined signals, and for every missing samples interval size. Results were obtained by averaging 1000 trials of

randomly selected positions for the missing interval.

4. EXPERIMENTAL RESULTS

In this section we test and evaluate the performance of the
proposed method on real ECG data. Test signals were taken
from the MIT-BIH Arrhythmia Database [15], consisting of
several ECG records for different study cases. We chose three
signals from this database which present different characteris-
tics (records: 102, 215 and 228), in segments of 10[sec] sam-
pled at a rate of 360[Hz]. The AR order was set to p = 50 for
two considerations. First, according to [11, 12], for p > 50
the model error variance does not decrease significantly any-
more. In addition, since we compare our proposed method to
the AR method, in order to create fair comparison conditions
we choose the same value of p as chosen in [11]. For applying
the AR method [11], 250 samples were taken for the forward
and backward interpolation, and «, the cross-fading windows
roll-off, was set to 2 as in [11, 12], again, for creating fair
comparison conditions. Accordingly, we set M = 250 for
the same reasoning.

The ECG test signals from the MIT-BIH Arrhythmia
Database were zeroed in random positions so as to simu-
late lost samples, where the size of the lost sample interval
was varied from 5 to 30 consecutive samples. All possible
positions of the missing interval were allowed (with equal
probability), except for first and last 250 samples, in order to
enable the AR method both forward and backward interpo-
lation for each missing segment. Note that this exception is
unnecessary for the implementation of our proposed method.

We assess the performance by the local Signal to recon-
struction error (Noise) Ratio (SNR) measure, defined as

2
0

= ) (dB],
0-6

where o7 is the average power of the original signal in the
missing interval and 03_ 5 is the average power of the recon-

SNR £ 101log;, ( (8)
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struction error. Fig. 3 shows the average local SNR of missing
samples recovery vs. the missing interval size K for the three
ECG signal recordings (each of length N = 3600 samples,
equivalent to 10[sec]). The average local SNR was obtained
by averaging 1000 trails of randomly selected positions for
the missing interval. As can be seen, the proposed method
yields superior performance over the AR method for all tested
signals and for every missing interval size which were exam-
ined. When K is small, the proposed method’s gain over the
AR method is significant and is more than 10[dB] in some
cases for the examined signals. As K increases, the local
SNR decreases in both methods and the gap is narrowed as
well. Nevertheless, the gain is still significant and strictly
positive for each of the tested signals and missing intervals
sizes.

5. CONCLUSION

In the context of missing samples recovery of ECG signals,
we proposed an autoregressive cyclostationary model, which
was empirically shown to be more suitable due to its quasi-
periodical characteristics. Additionally, we proposed an ap-
propriate non-iterative estimation procedure according to this
model, which is comprised of two phases - model parameters
estimation, followed by the missing samples estimation based
on the LMMSE criterion. In comparison to a previously sug-
gested approach, our model and estimation procedure yield
superior results and enhanced reconstructed ECG signals.
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