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ABSTRACT

A new method for the regularization of the objective func-
tion for the reconstruction of the foot-gait signal from com-
pressively sensed measurements is proposed. The method is
based on using the `2 norm of the first-order difference to reg-
ularize the objective function. The state-of-the-art first-order
difference sparsity promoting algorithms can introduce tran-
sient artefacts in the signal. The proposed regularization helps
to reduce such artefacts. Involved optimization can be solved
by using a sequential optimization procedure. The resulting
algorithm is useful for enhancing the quality of reconstructed
signal, especially in the situations when the CS system is ap-
plied with extremely high compression ratio. Simulation re-
sults indicate that the proposed method can offer upto 2.81dB
improvement in signal-to-noise ratio, 0.02 units improvement
in structural similarity measure, and a marginal increase in
the computational effort.

Index Terms— Compressive sensing, Foot-gait signals,
Signal reconstruction.

1. INTRODUCTION

Compressive sensing (CS) is an efficient technique for the
acquisition of sparse signals [1][2][3]. It involves com-
putationally expensive signal reconstruction process, and
the algorithms tailored for promoting temporal correlation
structure can offer effective reconstruction of physiological
signals [4][5]. The block-sparse Bayesian learning bound-
optimization (BSBL-BO) algorithm [6] has been effective for
the reconstruction of ECG signals. The `dp-regularized least-
squares (`dp-RLS) algorithm offers better signal reconstruction
performance especially for higher values of compression ratio
(CR) [4]. However, the `dp-RLS algorithm introduces tran-
sient artefacts in the reconstructed signal when applied for a
CS system with extremely high CR.

The authors would like to thank Natural Sciences and Engineering Re-
search Council of Canada (NSERC) for supporting this research.

We propose a first-order difference energy minimization
technique, called as the `d2-minimization technique, for the
reduction of artefacts introduced by the `dp-RLS algorithm
for high values of CR. The resulting algorithm called as the
`dp/`

d
2-regularized least-squares (`dp/`

d
2-RLS) algorithm can

be solved by using a sequential optimization procedure. The
gradient and Hessian of the objective function in the involved
optimization problem can be readily computed, hence a gradi-
ent descent based optimization algorithm can be conveniently
applied. Simulation results indicate that the `dp/`

d
2-RLS al-

gorithm offers improvement in the quality of reconstructed
signals, at the cost of a marginal increase in the amount of
computation.

2. BACKGROUND

In CS, a vector x of length N representing a signal segment
and its M number of measurements y are interrelated as

y = Φx (1)

where Φ is a measurement matrix of size M × N , typically
with M � N . Reconstruction of a vector x representing
temporally correlated physiological signals, such as ECG and
foot-gait signals, from the measurements y can be carried out
by solving the `dp-regularized least-squares (`dp-RLS) problem
[4]

miminize
x

f(x) = 1
2 ||Φx− y||22 + λfdp (x) (2)

where fdp (x) is the `dp-pseudonorm given by

fdp (x) =

N−1∑
n=1

[
(xn − xn+1)

2
+ ε2

]p/2
. (3)

In (2), the regularization parameter λ can be used to balance a
trade-off between the fidelity of the solution x̂ of the problem
in (2) for satisfying (1) and sparsity on the first-order differ-
ence of x̂. In (3), p is selected so that 0 < p ≤ 1 and ε
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is a small positive scalar used to render the function fdp (x)
smooth.

As described in [4], the problem in (2) can be solved
by using a sequential optimization (Seq. Opt.) procedure
described as follows: (i) Select large initial values {ε1, λ1}
and small target values {εT , λt} of parameters {ε, λ}. (ii)
Compute a total of T monotonically decreasing sequences
{ε1, ε2, . . . , εT } and {λ1, λ2, . . . , λT } as

εt = ε1 exp [−γ(t− 1)] for t = 1, 2, . . . , T (4a)

λt = λ1 exp [−α(t− 1)] for t = 1, 2, . . . , T (4b)

where γ = log(ε1/εT )/(T − 1) and α = log(λ1/λT )/(T −
1). (iii) Implement the Seq. Opt. procedure by repeating the
following steps for t = 1, 2, . . . , T :
Step 1 For t = 1, set xs = 0; for t > 1, select the solution

obtained from the (t− 1)th sub-optimization as xs.

Step 2 Use xs as the initializer, and carry out the tth sub-optimization
by solving the problem in (2) with {ε, p} = {εt, pt}.

The process of using decreasing values of ε and λ while
carrying out the Seq. Opt. can be called as ε-continuation and
λ-continuation, respectively.

3. RECONSTRUCTION OF FOOT GAIT SIGNALS
AND `DP /`

D
2 -REGULARIZED LEAST-SQUARES

Consider a foot-gait signal x shown in Fig. 1(a). The signal
reconstructed from CS measurements y with CR= 95% by
applying the `dp-RLS algorithm [4] is shown in Fig. 1(b). The
first-order difference vectors of the original signal in Fig. 1(a)
and that of the reconstructed signal in Fig. 1(b) are shown in
Figs. 1(c) and 1(d), respectively. As can be seen, the recon-
structed signal contains transient artefacts which can also be
observed in Fig. 1(d) as components with large amplitudes
relative to those shown in Fig. 1(c). Transient artefacts be-
come conspicuous especially when CR is extremely high, and
they affect the morphology of the signal. Therefore, we aim
to reduce the transient artefact in the reconstructed signal by
reducing the energy of the first-order difference vector, i.e.,
by reducing the `2 norm of the first-order difference vector.
Below the `2 norm of the first-order difference vector will be
called as the `d2 norm.

The `d2-norm of x, denoted as fd2 (x), is given by

fd2 (x) =

N−1∑
n=1

(xn − xn+1)
2
.

Function fd2 (x) can be included in the objective function
f(x) used in (2) as an additional regularization function.
As a result, we consider the combined `dp and `d2-regularized
least-squares optimization problem, called as the `dp/`

d
2-RLS

optimization problem, given by

minimize
x

f(x) (5a)

Fig. 1: (a) Original foot-gait signal, (b) signal reconstructed
by using `dp-RLS algorithm from measurements with CR=
95%, (c) first-order difference of the original signal, and (d)
first-order difference of the reconstructed signal.

where

f(x) =
1

2
||Φx− y||22 + λfdp (x) + µfd2 (x), (5b)

and λ and µ are the regularization parameters. Parameter λ
can be used to promote sparsity on the first-order difference of
x and µ can be used to reduce the transient artefacts resulting
from the promotion of sparsity.

Gradient of f(x) can be computed as

g = ΦT (Φx− y) + λgp + µg2 (6a)

where vector g2 is given by

g2 = [g2,1 g2,2 · · · g2,N ]
T (6b)

and

g2,n =

 2 (xn − xn+1) for n = 1
2 (−xn−1 + 2xn − xn+1) for n = 2, . . . , N − 1

2 (−xn−1 + xn) for n = N
.

(6c)
Hessian matrix H of sizeN×N for f(x) can be computed

as
H = ΦTΦ + λHp + µH2 (7a)

where H2 is the Hessian for fd2 (x) whose {i, j}th component
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hi,j is given by

hi,j =


1 for {i, j} = {1, 1}, {N,N}
2 for {i, j} = {2, 2}, . . . , {N − 1, N − 1}
−1 for {i, j} = {1, 2}, . . . , {N − 1, N}
−1 for {i, j} = {2, 1}, . . . , {N,N − 1}
0 otherwise

.

(7b)
Gradient vector gp and Hessian matrix Hp for the `dp-pseudonorm
fdp (x) in (5b) are given in [4].

Using (6), (7), and the expressions for gradient and Hes-
sian given in [4], a conjugate-gradient (CG) algorithm can be
readily implemented for solving the problem in (5) for a given
set of values of {ε, λ, µ}. For an implementation of the Seq.
Opt. procedure (see last paragraphs of Sec. 2) for solving the
problem in (5), we propose to include µ-continuation in addi-
tion to the {ε, λ}-continuation. Thus, given sufficiently large
and small values {µ1, µT } of µ, a total of T monotonically
decreasing values of µ can be determined as

µt = µ1 exp [−α(t− 1)] for t = 1, 2, . . . , T (8)

where α = log(µ1/µT )/(T − 1). In the resulting Seq. Opt.
procedure, the tth sub-optimization can be carried out by
solving the problem in (5b) with µ = µt, ε = εt, and λ = λt.

The `dp/`
d
2-regularized least-squares (`dp/`

d
2-RLS) algo-

rithm based on the above analysis can be summarized as
shown in Table 1.

Table 1: `dp/`
d
2-RLS Algorithm

Step 1:
Input Φ, y, p, {λ1, λT }, {ε1, εT }, {µ1, µT }, T .
Set xs = 0.
Step 2:
Compute {ε1, . . . , εT }, {λ1, . . . , λT }, {µ1, . . . , µT } using
(4), (8).
Step 3:
Repeat the following for t = 1, 2, . . . , T :

(i) Set µ = µt, ε = εt, λ = λt.
(ii) Using initializer xs, gradient computed as (6),

and Hessian computed using (7), run the tth
sub-optimization with parameters µ, ε, λ .

(iii) Denote the resulting solution as xs.
Step 4:
Output xs and Stop.

4. SIMULATION RESULTS

Segment length N was set to N = 512. The foot-gait signals
were selected from the signal records in the Gait Dynamics
in Neuro-Degenerative Disease database [7], and all the 128
signals were normalized so as to ensure that their their compo-
nent values are within the range −1 ≤ x(n) ≤ 1. The signals

were divided into segments of length N resulting in approxi-
mately 22000 segments. A total of 12 values of the number of
measurements M were selected as M = round(tN) where
t = 0.05,0.08,. . .,0.38. A sparse random measurement ma-
trix Φ was constructed as in [4][5] with total two unity-valued
components in each column. Measurements y were taken as
(1). The proposed `dp/`

d
2-RLS and the `dp-RLS [4] algorithms

were applied with T = 30, ε1 = 1 εT = 10−3, λ1 = 1,
λT = 10−3, p = 1. Parameters µ1, µT for the `dp/`

d
2-RLS al-

gorithm were set to µ1 = 1 and µT = 10−2. Signal-to-noise
ratio (SNR) was computed as

SNR = 20 log10 (||x||2/||x− x̂||2) dB,

where x̂ denotes the reconstructed signal. Structural simi-
larity index measure (SSIM) between vectors x and x̂ was
computed as [8]

SSIM (x, x̂) = l · c · s (9a)

where

l =
2mxmx̂ + 10−3

m2
x +m2

x̂ + 10−3
, c =

2σxσx̂ + 10−3

σ2
x + σ2

x̂ + 10−3
, (9b)

s =
σx,x̂ + 10−3

σxσx̂ + 10−3
. (9c)

In (9), mx and mx̂ are mean values of x and x̂, respectively;
and σx, σx̂, and σx,x̂ denote standard deviation of x, standard
deviation of x̂, and covariance of x, x̂, respectively. Com-
pression ratio (CR) for a value of M was computed as

CR = [(N −M)/N ]× 100%.

Average SNR obtained for the two algorithms over the re-
construction of 22000 different signal segments with different
measurement matrices Φ is shown in Fig. 2. As can be seen,
SNR for the `dp/`

d
2-RLS algorithm is higher than that for the

`dp-RLS algorithm. Average SSIM is shown in Fig. 3. As can
be seen, SSIM is higher for the `dp/`

d
2-RLS algorithm for all

values of CR. SNR for `dp/`
d
2-RLS algorithm was observed to

be more than that for the `dp-RLS algorithm by upto 2.81dB.
SSIM for the `dp/`

d
2-RLS algorithm for CR= 95% was ob-

served to be higher than that for the `dp-RLS algorithm, i.e.,
by 0.02 units higher than that for the `dp-RLS algorithm.

Computational effort was measured in terms of the CPU
time required to run a MATLAB R2016a implementation of
an algorithm in a desktop PC with 2.20GHz processor, 8 GB
RAM with 64−bit Windows 10 operating system. Average
CPU time over 22000 different reconstructions is shown in
Fig. 4. As can be seen, computational effort for the `dp/`

d
2-

RLS algorithm is marginally higher than that for the `dp-RLS
algorithm. For CR=95%, CPU time for the `dp/`

d
2-RLS algo-

rithm is smaller than that for the `dp-RLS algorithm.
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Fig. 2: SNR for foot-gait signals for `dp/`
d
2-RLS and `dp-RLS

algorithms with N = 512, over 22000 runs.

Fig. 3: SSIM for foot-gait signals for `dp/`
d
2-RLS and `dp-RLS

algorithms with N = 512, over 22000 runs.

Signal segment of length N = 1024 reconstructed by us-
ing the `dp/`

d
2-RLS algorithm with CR= 95% is shown in

Fig. 5; see Figs. 1(a) and 1(b) for corresponding original sig-
nal and signal reconstructed by using the `p-RLS algorithm,
respectively. As can be seen, the quality of the signal recon-
structed using `dp/`

d
2-RLS algorithm is much better than that

reconstructed by using the `dp-RLS algorithm. The FoD vec-
tor shown in Fig. 5(c) is closer to the FoD of original signal
shown in Fig. 5(b) and Fig. 1(c) relative to the FoD vector
shown in Fig. 1(b). SNR for the `dp/`

d
2-RLS and `dp-RLS al-

gorithms for the signals plotted in Figs. 1 and 5 were 14.65
and 11.26, respectively, and SSIM index for `dp/`

d
2-RLS and

`dp-RLS algorithms were 0.9779 and 0.94841, respectively.

4.1. Future work

In the proposed f`dp/f`d2 -RLS algorithm, the energy mini-
mization has been demonstrated to improve the performance
of the `dp-RLS algorithm [4] for extremely high values of

Fig. 4: Average CPU time for `dp/`
d
2-RLS and `dp-RLS algo-

rithms with N = 512, over 22000 runs.

Fig. 5: (a) Signal reconstructed by using `dp/`
d
2-RLS algo-

rithm from measurements with CR= 95%, (b) first-order dif-
ference of the original signal in Fig. 1(a), and (c) first-order
difference of the signal in (a).

CR. It would be interesting to study the effect of the energy
minimization techniques for improving performance of the
other related algorithms, such as, the `2dp -RLS, `d2/p-RLS
algorithms presented in [5][9][10].

5. CONCLUSION

A new method for the regularization of the objective function
for the reconstruction of foot-gait signals is proposed. The `d2-
norm is used along with the `dp-pseudonorm in the objective
function of the involved optimization problem. Simulation
results have indicated that the resulting `dp/`

d
2-RLS algorithm

is effective for the reduction of transient artefacts introduced
by the state-of-the-art `dp-RLS algorithm. When CS is applied
with extremely high compression ratio, the `dp/`

d
2-RLS algo-

rithm can offer significantly higher SNR and SSIM index rela-
tive to the `dp-RLS algorithm at the cost of a marginal increase
in the computational effort.
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