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ABSTRACT
This paper presents a low complexity while accurate Heart
Rate (HR) estimation technique from signals captured by
Photoplethysmographic (PPG) sensors worn on the wrist
during intensive physical exercise. Wrist-type PPG signals
experience severe Motion Artifacts (MA) that hinder efficient
HR estimation especially during intensive physical exercises.
To suppress the motion artifacts efficiently, simultaneous 3
dimensional acceleration signals are used as reference MAs.
The proposed method achieves an Average Absolute Error
(AAE) of 1.19 Beats Per Minute (BPM) on the 12 bench-
mark PPG recordings in which subjects run at speeds of up
to 15 km/h. This method also achieves an AAE of 2.17
BPM on the whole benchmark database of 23 recordings
that include both running and arm movement activities. This
performance is comparable with state-of-the-art algorithms
while at a significantly reduced computational cost which
makes its standalone implementation on wearable devices
feasible. The proposed algorithm achieves an average pro-
cessing time of 32 milliseconds per input frames of length 8
seconds (2 channel PPG and 3D ACC signals) on a 3.2 GHz
processor.

Index Terms— Realtime Heart Rate Monitoring, Wear-
able Photoplethysmography (PPG) Technology, Wristbands
and Smartwatches

1. INTRODUCTION

The increased functionality of wearable technologies has
made them a significant part of everyday life nowadays. Heart
rate (HR) monitoring from wrist-type Photoplethysmography
(PPG) signals captured by wristbands and smartwatches dur-
ing physical exercise is one of these functionalities. This
helps exercisers to adapt their training load to better meet
their goals.

The PPG sensors embedded in wearables emit light to the
skin and measure the changes of intensity in the reflected por-
tion. The periodicity of these measurements in an artifact-free
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condition correspond to the cardiac rhythm and hence HR can
be estimated from the PPG signal [1]. However, wrist-type
PPG signals captured during physical exercises are signifi-
cantly affected by relative movements of the skin tissue and
the PPG sensor. This causes Motion Artifacts (MA) that sig-
nificantly hinder efficient HR estimation from the PPG sig-
nal. An effective technique to cleans MA-contaminated PPG
signals is to utilize simultaneously recorded accelerometer
(ACC) signals as MA reference [2].

This problem was posed in the initial work of Zhang et.
al. [2] which also provided the benchmark database and per-
formance metrics for subsequent researches. This database
was made public for the IEEE Signal Processing Cup 2015
(http://zhilinzhang.com/spcup2015/data.html) and includes
23 wrist-type 2 channel PPG and simultaneous 3D ACC
recordings of subjects running on treadmill or doing intensive
physical exercises. Since [2] that achieved an AAE of 2.34
BPM on the first 12 recordings (running activities), several
HR monitoring algorithms have been proposed and tested
[3–16]. Although some recent studies achieved AAEs as
small as 1 BPM on the first 12 and 2 BPM on the whole
23 database recordings [3], the computational complexity of
the proposed signal processing algorithms still needs to be
reduced. For example, a couple of the prior works [2],[4],[5]
propose sparse reconstruction techniques for high resolution
estimation of the PPG spectrum which impose a large com-
putational burden to wearable processors. Moreover, the ad-
vanced signal processing techniques proposed so far for MA
suppression such as Independent Component Analysis (ICA)
[6], Adaptive Noise Cancellation (ANC) [5], [7], asymmetric
least squares [8], Ensemble Empirical Mode Decomposition
(EEMD) [15], Multi-Channel Spectral Matrix Decomposi-
tion (MC-SMD) [16] and wiener filtering [3] could also be
avoided by a concise study of intrinsic PPG signal properties.

The HR estimation technique proposed in this letter is
based on several observations on the intrinsic PPG signal
properties. It consists of 4 main steps of Auto Regressive
(AR) spectrum estimation, MA suppression by spectral di-
vision, HR amplification by Cumulative Spectrum (CUM-
SPEC) and HR tracking by a lazy tracker algorithm. Fig.
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Fig. 1. Overall block diagram for the proposed method

1 gives the overall block diagram for the proposed method.
Each block is based on an observation on a basic PPG prop-
erty. In the following, we explain each block and the corre-
sponding observation on PPG properties.

2. SMEARED SPECTRAL PEAKS AND THE
AUTOREGRESSIVE (AR) MODEL

A first observation on the spectrum of the PPG signals under
study is that the spectral peak corresponding to HR is smeared
by MAs and hence, it cannot be resolved by the simple peri-
odogram. To cope with this issue, we use the Auto Regres-
sive (AR) parametric model for spectrum estimation. The AR
model is known to minimize sidelobes and provide the flattest
spectrum by the maximum entropy criteria [17]. This tech-
nique is also computationally efficient (second order polyno-
mial time complexity) as it can be realized recursively by the
Levinson-Durbin algorithm [17]. More precisely, we model
the PPG signal as a periodic excitation due to the Heart Beat
which is subsequently filtered by the all-pole transfer function
of the overall artery system and the PPG sensors as in (1). In
(1), P (ω) is the estimated PPG spectrum, p is the AR model
order and the unknown coefficients ai are iteratively calcu-
lated by the Levinson-Durbin algorithm. The AR model also
proved to yield superior results compared with other para-
metric spectrum estimation methods (ARMA, MUSIC, etc.)
in preliminary simulations which further confirms the above
model.

P (ω) =
1

|1 +
∑p

k=1 ak exp(−jωk)|2
(1)

It should be noted that to make efficient use of diversity
in the spectrum estimation step, the proposed algorithm es-
timates the AR spectra for both PPG channels, normalizes
them to 1 and adds them together to achieve a single PPG
spectrum. A similar normalization/addition is also applied to
the 3D ACC signals. Note that normalization is required to
cope with the effects caused by different PPG and ACC sen-
sor gains.

3. MA SUPRESSION BY SPECTRAL DIVISION

It is observed that the 3D ACC signals include spectral peaks
that correspond to MAs. Usually, these peaks also appear in

the PPG spectra and interfere with the HR peak. To suppress
the MAs, we simply divide the PPG spectrum to the ACC
spectrum according to (2). In (2), P (ω) and A(ω) denote the
PPG and ACC spectra respectively, D(ω) is the cleansed PPG
spectrum and Cd is a constant parameter to avoid division by
small values. In other words, (2) attenuates P (ω) in frequen-
cies for which A(ω) is large and Cd acts as a soft threshold to
avoid division by small spectral fluctuations due to sidelobes
or sensor noise. This parameter is later trained on the database
in the range [0, 1] to achieve the best performance. Spectral
division proved to be a simple but pretty efficient MA sup-
pression method in simulations with an affordable complexity
(linear time complexity).

D(ω) = P (ω)× Cd

A(ω) + Cd
(2)

4. VENUS PULSATION PHENOMENON AND THE
CUMULATIVE SPECTRUM (CUMSPEC)

A determinant factor on temporal shape of the PPG signal is
the venous pulsation phenomenon which causes a less signif-
icant but noticeable second peak in each cardiac cycle [18].
As a result, HR is observed to possess a considerable second
harmonic in the PPG spectrum. Considering both harmonics
in HR estimation improves the accuracy especially for frames
in which one of the harmonics is highly interfered by MA.
To consider the intrinsic second harmonic, we propose the
heuristic CUMulative SPECtrum (CUMSPEC) measure that
scores each frequency in the natural human HR range accord-
ing to its own and second harmonic amplitudes in the cleansed
PPG spectrum as in (3).

H(ω) =

{
D(ω) + Ch ×D(2ω), ω ∈ [ωl, ωh]
0, otherwise (3)

In (3), H(ω) denotes the proposed CUMulative SPEC-
trum (CUMSPEC) measure, Ch is a constant weight and
[ωl, ωh] covers natural human HR range. The CUMSPEC
also amplifies the HR spectral peak in comparison with MAs
and further alleviates the need for computationally demand-
ing MA suppression techniques. Note that Ch is trained on
the database in the range [0, 2] to achieve the best perfor-
mance.

5. SPECTRAL FOOTPRINTS OF HR AND MA AND
HR TRACKING

It is observed in the spectrogram of the PPG recordings that
HR and MA frequencies pose different behaviors with time.
HR experiences a smooth and derivative-bounded curve, how-
ever, the MA spectral peaks appear and vanish suddenly, but
infrequently. This is due to the fact that physical exercises
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Algorithm 1 Lazy Tracker
Input: H(ω): CUMSPEC measure

ωr: Most recent HR estimate
ωp: Average 5 previous HR estimates

Output: ωc: Current HR estimate
1: if Initializing the Track then
2: ωc ← argmaxω H(ω)
3: else
4: ωc ← argmaxω∈[ωp−C−, ωp+C+] H(ω)
5: ωc ← min(ωc, ωr + Cj)
6: ωc ← max(ωc, ωr − Cj)

usually consist of periodic body movements each being per-
formed for a limited duration (e.g. running on a treadmill
at different speeds, each speed for a limited interval). We use
this observation to propose an HR tracking algorithm that uses
previous estimates of the HR value to improve the estimation
accuracy in frames severely corrupted by MAs. The proposed
Lazy Tracker algorithm searches for the highest spectral peak
in CUMSPEC H(ω) in a wide frequency range around the av-
erage 5 previous HR estimates. Yet to avoid misleading jumps
due to MAs, it takes a step bounded by a constant parameter
(denoted by Cj) towards that frequency. The Lazy Tracker
is formally presented in Algorithm 1. Note that the parame-
ters Cj < 10 BPM, C+, C− > 15 BPM are trained on the
database for the best performance.

6. PERFORMANCE COMPARISONS

As mentioned previously, we use the benchmark database
provided for the IEEE SP CUP 2015 [2] for simulations. This
database contains 23 recordings of 2 channel PPG and si-
multaneous 3D ACC signals. The first 12 recordings involve
subjects’ running on treadmill and the rest include arm move-
ment activities (e.g. boxing, etc.). The signals are recorded at
125 Hz sampling rate. Ground truth HR values are available
for each 8 sec frame and the consecutive frames overlap 6
secs together. Also note that for a fair comparison of the
results with the literature, we use the Average Absolute Error
(AAE) value proposed in [2] as the performance measure.

Utilizing this database, we pick one recording of the
database at a time and train the algorithm parameters on
it for minimized AAE using a Genetic Algorithm (GA).
Then we use the optimized parameters for all the other
recordings. We repeat this procedure for all recordings in a
leave-one-out cross-validation scheme. The parameter vector
(Cd, Ch, C

−, C+, Cj , p) is modeled as a gene and optimized
by GA on a population of size 30 for 50 generations, while
holding the range constraints stated in the previous sections.
Utilizing this strategy, we set (Cd, Ch, C

−, C+, Cj , p) =
(0.031, 0.34, 25, 37, 5.1, 510) and report the AAE values for
all 23 database recordings in Table 1. Table 1 also com-
pares the AAE values achieved by the proposed method with

Table 1. Average Absolute Error (AAE) Comparisons
Rec. # [2] [4] [5] [15] [3] This Study

1 2.29 1.33 1.72 1.70 1.25 1.81
2 2.19 1.75 1.33 0.84 1.41 1.44
3 2.00 1.47 0.90 0.56 0.71 0.63
4 2.15 1.48 1.28 1.15 0.97 1.16
5 2.01 0.69 0.93 0.77 0.75 0.83
6 2.76 1.32 1.41 1.06 0.92 1.40
7 1.67 0.71 0.61 0.63 0.65 1.02
8 1.93 0.56 0.88 0.53 0.97 0.63
9 1.86 0.49 0.59 0.52 0.55 0.68

10 4.70 3.81 3.78 2.56 2.06 2.77
11 1.72 0.78 0.85 1.05 1.03 1.03
12 2.84 1.04 0.71 0.91 0.99 0.90

AAE-12 2.34 1.28 1.25 1.02 1.02 1.19
13 – – – – 3.54 6.58
14 – – – – 9.59 7.13
15 – – – – 2.57 1.35
16 – – – – 2.25 2.41
17 – – – – 3.01 4.42
18 – – – – 2.73 2.04
19 – – – – 1.57 3.25
20 – – – – 2.10 2.20
21 – – – – 3.44 3.52
22 – – – – 1.61 1.45
23 – – – – 0.75 0.71

AAE-23 – – – – 1.97 2.17

several state-of-the-art techniques in the field. However, to
provide a fair comparison with previous studies, we also
need to compare the computational complexity/runtime of
the algorithms.

As mentioned previously, the overall complexity of our
proposed algorithm is bounded by the AR spectrum estima-
tion step which is asymptotically quadratic O(n2) in frame
length [17]. Simulations show that the proposed algorithm
processes each 8 sec input frame in 28ms on average using
MATLABTM on a 3.2 GHz processor. This figure for [2], [5],
[4], and [15] is 7.4sec, 6.05sec, 853ms, and 583ms, respec-
tively. Hence, the proposed method achieves feasible estima-
tion accuracy at a reduced computational complexity. Con-
sidering the fact that modern smart watches are equipped with
processors operating at clock rates higher than 0.5 GHz, the
proposed algorithm seems suitable for real-time stand-alone
operation on wearable devices.

7. CONCLUSION

In this paper we proposed a low complexity technique for
realtime heart rate monitoring using simultaneous wrist-type
PPG and 3D acceleration signals, when the subjects are per-
forming intensive physical exercises. In comparison with
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state-of-the-art algorithms in the field, our proposed frame-
work shows acceptable estimation accuracy at a considerably
reduced computational cost.
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