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ABSTRACT

Structural variants (SVs) – novel adjacencies in an individ-
ual’s genome – lead to genomic diversity across all organ-
isms. When DNA fragments of an unknown genome are com-
pared to a reference genome, errors in sequencing and map-
ping obscure true genomic rearrangements. When the se-
quencing coverage is low, this may lead to high false posi-
tive rates in predicted SVs. In this paper, we propose a novel
maximum likelihood approach to SV prediction incorporat-
ing low-coverage sequencing data and coverage distribution.
Specifically, we address mean and variance assumptions pro-
posed by Poisson models and develop a Negative Binomial
framework which reflects a more accurate representation of
DNA fragments in an individual’s genome. We incorporate
both sparsity and inheritance in our model with an `1 penalty
and linear constraints, respectively. We validate our model on
both simulated and real genomic data of related individuals.
Moreover, our results indicate an improvement on threshold-
ing observations of candidate variants.

Index Terms— Sparse signal recovery, nonconvex opti-
mization, structural variants, computational genomics

1. INTRODUCTION

Structural variations (SVs) – genomic rearrangements longer
than one basepair long – account for a large portion of ge-
netic diversity in all organisms (see Fig. 1). In humans, SVs
have been associated with genomic diseases, but the vast ma-
jority appear to be harmless variants passed from parents to
offspring [1, 2]. The dominant method for detecting SVs in
an individual’s genome is to sequence their genome, which
results in many short DNA sequence reads, and then map (or
align) these reads to a high-quality reference genome. Re-
gions of the sequenced genome that differ from the reference
correspond to SVs in the sequenced genome. The locations
of SVs in the sequenced genome are thus computationally
determined by identifying clusters of reads in discordant ar-
rangements [3, 4]. As DNA sequencing continues to advance,
and produce ever longer DNA reads, most methods to detect
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SVs still suffer from high error rates associated with the se-
quencing and mapping process [3]. While one solution would
be to sequence individuals to extremely high coverage, this
comes at increased financial and computational cost. More-
over, portable sequencing technology provides the opportu-
nity to sequence many individuals at low coverage relatively
quickly [5].

During the sequencing process, if genomic fragments are
randomly chosen from the genome, then the Poisson distri-
bution describes the number of reads covering any genomic
locus [6]. The Poisson assumption with a mean represented
by the coverage also assumes the same variance. However,
sequencing technologies are known to be biased, resulting in
large variation of coverage depth. This is particularly true
in low-coverage settings [7, 8, 9]. In this regime, studies
suggest that the two parameter negative binomial distribution
may be more accurate in describing the distribution of frag-
ments [10, 11].

Fig. 1. Illustration of regions in sequenced genome where
there is a deletion (left) and no deletion (right) relative to a
reference genome (ground truth). When sequenced fragments
of the unknown genome do not map concordantly to the refer-
ence genome, we consider this a signal for a potential deletion
or other structural variants (SVs). Note that for a deletion, the
fragment from the individual maps to a larger than expected
region in the reference. Fragments aligning to the reference in
a concordant fashion indicate there is no genomic variation.

We note that many computational methods exist for pro-
cessing mapped fragments and predicting SVs [12, 13, 14,
15, 16]; however most are based on only the mapped frag-
ments and do not utilize other information about SVs if avail-
able. For example, SVs are relatively rare in an individual’s
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genome, but most methods do not attempt to rank or pri-
oritize predictions by how likely they are. This results in
many false positive predictions because fragments that have
been mapped to incorrect locations in the genome are likely
to be mistaken as an SV [17, 18, 19]. In addition, when
analyzing related individuals, who should share SVs, vari-
ant detection methods only use relatedness to filter calls as a
post-processing step [12, 14, 15]. While some computational
methods utilize the probability of arrangements of fragments,
allowing them to estimate the probability a prediction is false
or to rank their predictions by likelihood, most methods rely
on the assumption of Poisson coverage [20]. Overall, most
computational methods suffer from high false positive rates,
but high-coverage and high quality data tend to resolve many
false calls [3, 21].

In this work, we aim to improve upon past SV prediction
methods in primarily three ways. Whereas previous work as-
sumed mapped reads follow a Poisson distribution, we incor-
porate a negative binomial distribution to model the distribu-
tion of fragments [10, 22, 23, 24]. Instead of assuming equal
mean and variance, we estimate both from the data and the
negative binomial model captures the large variability in the
sequencing coverage. Fig. 2, for example, provides empirical
examples of this phenomena from the 1000 Genomes Project
[17]. Secondly, we incorporate low-coverage data instead of
relying on high-quality genomic data. Finally, we concur-
rently consider sequencing data of related individuals and en-
force inheritance of variants through inequality constraints.
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Fig. 2. Plot of the map quality vs depth of coverage variance
(mean per trio reported) for European (CEU) trio, Yoruba
(YRI) trio, and both trios (father-mother-child) genomes from
the 1000 Genomes Project. Varying the minimum map qual-
ity of reads, we calculate the depth of coverage for each ge-
nomic locus. The data show a much higher variance than the
expected coverage of ≈ 4X.

2. NEGATIVE BINOMIAL LOG-LIKELIHOOD
OPTIMIZATION

We consider the true signal ~f∗ ∈ {0, 1}n to be a binary vector
indicating the presence of a genetic variant, with ~f∗j = 1 if a
variant is present at location j and 0 otherwise [22, 24, 25].
Thus, the corresponding parent ~yp and child ~yc observations
are given by

~yp ∼ NegBin(~µp, ~σ2
p) and ~yc ∼ NegBin(~µc, ~σ2

c ), (1)

where mean µi and variance σ2
i , (i ∈ {p, c}) of depth of cov-

erage will be determined by the sequencing data of each re-
spective individual. We consider the stacked child-parent sig-
nal ~y = [ ~y Tp ~y Tc ]T and corresponding mean and variance
vectors, ~µ and ~σ2. (Here, the notation ~σ2 is to be understood
component-wise.) In particular, we have the following ex-
pressions for the components of ~µ and ~σ2:

(µ)j =
(
A~f∗

)
j

and (σ)2j =
(
A~f∗

)
j
+

1

r

(
A~f∗

)2
j
,

where A, representing expected sequencing coverage, lin-
early projects the true signal ~f∗ onto the n-dimensional set of
observations, and r is the dispersion parameter of the negative
binomial distribution.

Problem Formulation. When r → ∞, we have σ = µ and
this reduces to the Poisson case. If we choose to estimate
these parameters from the sample, then we must observe a
variance higher than the mean. Under this model, the proba-
bility of observing ~y is given by the following:

p(~y) =

n∏
j=1

(
yj +

µ2
j

σ2
j−µj

−1
yj

)(
µj
σ2
j

) µ2j

σ2
j
−µj
(
1− µj

σ2
j

)yj
. (2)

Ignoring constant terms, the negative log-likelihood term,
F (µ, σ2), becomes

F (µ, σ2) ≡
n∑
j=1

−log


[
yj +

µ2
j

σ2
j+µj

− 1
]
!

(yj)!
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log
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1

σ2
j
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)
− yj log

(
1− 1

σ2
j

µj

)
.

Maximizing variance. Without reverting to the use of
Gamma functions for r ∈ R, we assume r ∈ Z+ and we
know σ2

j = µj +
1
rµ

2
j , where σ2

j is maximized when r = 1.
Thus, we can rewrite the probability (2) of observing ~y as

p(~y) =

n∏
j=1

(
1

1 + µj

)(
µj

1 + µj

)yj
, (4)

with associated negative log-likelihood,

F ≡
n∑
j=1

(yj + 1) log (1 + µj)− yj log (µj) .
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However, we know the mean µj = eTi Af . Then, adding the
small parameter ε to represent sequencing or mapping error,
we have

F (f) ≡
n∑
j=1

(yj+1) log
(
1 + eTi Af + ε

)
−yj log

(
eTi Af + ε

)
,

(5)
with gradient

∇F (f) =
n∑
j=1

yj + 1

1 + eTi Af + ε
AT ei −

yj
eTi Af + ε

AT ei.

(6)
Continuous Relaxation. To apply calculus of variations ap-
proaches in this classification problem, we allow for f to take
on continuous values in [0, 1]. Otherwise, the combinatorial
optimization problem may be intractable with a maximum-
likelihood approach. As such, the negative binomial recon-
struction algorithm takes the following form of the following
constrained optimization problem for a one-parent and one-
child (P,C) model:

minimize
~f∈R2n

ψ(~f) ≡ F (~f) + τ ‖~f‖1

subject to 0 ≤ ~fc ≤ ~fp ≤ 1,
(7)

where ~f =
[
~f Tp

~f Tc
]T

, 1 is a vector of ones, and τ is a regu-
larization parameter. We assume that a child will have an SV
at a certain location only if the parent also has the SV at the
same location. We enforce this through the linear constraint
0 ≤ ~fc ≤ ~fp ≤ 1. Using a gradient-descent approach, the
next iterate in our estimation is given by

~fk+1 =
[
~fk − αk∇F (~fk) + τ1

]
P,C

, (8)

with step size (learning rate) αk and the operation [·]P,C is
a projection onto the feasible set defined by the linear con-
straints in (7) (see [22] for further details).

3. RESULTS

We evaluate the effectiveness of the proposed method on
both simulated and real genomic data and compare our re-
constructions with thresholding observations ~y and previous
Poisson models. The proposed method is implemented in
Python 3.6. We explored ten logarithmically-spaced regu-
larization parameters τ from a 10−2 to 102 grid and chose
the value yielding the largest average maximum area un-
der curve for the receiver operating characteristic (ROC)
using 5-fold cross-validation. To determine the number of
true and false positives, we threshold the reconstructed sig-
nal – thereby un-relaxing our continuous assumption. For
all experiments, we set α = 0.01. The algorithm termi-
nates if the relative difference between consecutive iterates
‖~fk+1 − ~fk‖/‖~fk‖2 ≤ 10−6 or exceeds the maximum num-
ber of iterates.
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Fig. 3. ROC curves illustrating the number of false positives
vs the number of true positives for both the parent and child
signal reconstruction with µp = 4, µc = 4, ε = 0.01, and
50% similarity. In both reconstructions, we set τ = 1.6681
based on 5-fold cross validation. We observe more true pos-
itives using our proposed method when compared to thresh-
olding the signal. This is particularly true in the first thousand
predictions.

3.1. Simulated Data

We simulated two signals ~fp and ~fc, representing the parent
and child signals respectively. Each candidate set of SVs were
drawn from a negative binomial distribution with dispersion
parameter r = 1 and mean µp = µc = 4. We observe n =
105 potential SV candidates for each individual, with 500 true
variants for ~fp, and 250 inherited variants for ~fc. This reflects
a 50% similarity level and we set ε = 0.01 to represent the
mapping and sequencing error in the forward model.

Analysis. We first examine the parent signal reconstruction.
Fig. 3 presents the number of false positive vs true positives
for the reconstruction of the parent and child signals with
mean coverage µp = µc = 4, r = 1, and ε = 0.01. Although
n = 105, we focus on a more detailed view in the ROC curve
to discern differences in prediction. Based on AUC measure-
ments, we immediately observe an improvement in the num-
ber of true predictions over thresholding with our proposed
model. For the 1 Parent-1 Child model, we expect parental
reconstructions to be more informed by the child signal [22].

For the reconstructed child signal, we observe a marginal
improvement when the number of false positives is relatively
low. We note, however, that both the parent and child recon-
structions incorporate a penalty of τ = 1. This is an im-
provement on our previous methods, which typically resulted
in tuning τ for each individual [26, 27].

3.2. 1000 Genomes Project Data

We applied our method to both sequenced genomes of the
father-mother-daughter trios from European (CEU) and
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Fig. 4. ROC curves illustrating the number of false positives
vs the number of true positives for parent signal reconstruc-
tion with µp = µc = 4, ε = 0.01, τ = 0.01 for both CEU
and YRI populations. We observe an improvement in true
predictions across both signals of interest.

Yoruba (YRI) populations. All six individuals from the 1000
Genomes Project were sequenced to ≈ 4X in Pilot 1 and
aligned to NCBI36 [17]. We consider experimentally vali-
dated deletions meeting the following criteria as the true dele-
tions: longer than 250bp, not LowQual, and non-overlapping
with centromere and telomere regions.

We implemented GASV [13] on this data to obtain the
candidate variant set. The intersection between the candidate
SVs and true deletions results in the true signal ~f∗. We ob-
serve high variability in expected coverage in Fig. 2 and thus
threshold the minimum map quality at 10 for all individuals.

Analysis. We note a higher area under the curve in ROCs of
the reconstructed signals for both CEU and YRI populations
in Fig. 4 and 5 in comparison to the previous Poisson model.
Additionally, this Fig. 4 depicts the number of novel deletions
vs. true (experimentally validated) deletions since not the true
set may be incomplete. Although not pictured, we observe
similar trends for p2 in CEU and YRI populations. Next, we
consider the reconstruction for the child signals for both CEU
and YRI populations. Fig. 5 illustrates a small but measurable
difference in true predictions for both with the same τ across
all individuals.

4. CONCLUSIONS

We propose a novel optimization method to detect structural
variants from sequencing data of related individuals. Our
method addresses mean and variance assumptions of previ-
ous methods and incorporates both relatedness and sparsity
into the signal reconstruction. In future studies, we will re-
lax the integer assumption on the dispersion parameter r to
generalize our method and accommodate higher variances in
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Fig. 5. ROC curves illustrating the number of false positives
vs the number of true positives for child signal reconstructions
with µp = µc = 4, ε = 0.01, τ = 0.01 for both CEU and YRI
populations. For a fixed number of novel deletions, we report
a higher number of true positives.

sequencing data. We also intend to incorporate other opti-
mization approaches for this nonconvex formulation.
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