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ABSTRACT

This paper presents a new method to estimate user preferences for
videos based on multiple feature fusion via semi-supervised Mul-
tiview Local Fisher Discriminant Analysis (sMvLFDA). The pro-
posed method first extracts multiple visual features from videos and
functional near-infrared spectroscopy (fNIRS) features from fNIRS
signals recorded during watching videos. Next, we apply Locality
Preserving Canonical Correlation Analysis (LPCCA) to each visual
feature and fNIRS features and project each visual feature to the new
feature spaces (fNIRS-based visual feature spaces). Consequently,
since the correlation between each visual feature and fNIRS features
which reflect user preferences is maximized, we can transform vi-
sual features into features which also reflect user preferences. In
addition, we newly introduce sMvLFDA and fuse multiple fNIRS-
based visual features via sMvLFDA. sMvLFDA fuses features while
using labeled samples and unlabeled samples simultaneously to re-
duce overfitting to the labeled samples. Furthermore, sMvLFDA ad-
equately uses complementary properties in multiple features. There-
fore, it can be expected that the fused features are more effective
for estimation of user preferences than each fNIRS-based visual fea-
ture. The main contribution of this paper is the new derivation of
sMvLFDA. Consequently, by using the fused features, it becomes
feasible to estimate user preferences for videos successfully.

Index Terms— Personal preference, functional near-infrared
spectroscopy (fNIRS), canonical correlation analysis, Fisher dis-
criminant analysis.

1. INTRODUCTION

With increasing the number of videos uploaded on the Web, it has
become important to recommend videos and help users to find their
favorite videos. To realize such recommendations, it is necessary
to accurately estimate user preferences for videos [1]. Some meth-
ods have analyzed brain signals which represent the degree of brain
activity to estimate user emotions and preferences [2, 3, 4]. From
these methods, we consider that it is effective for preference esti-
mation to introduce features extracted from brain signals. In addi-
tion, many methods have focused on using functional near-infrared
spectroscopy (fNIRS) and measuring the degree of brain activity as
fNIRS signals [5]. fNIRS detects hemoglobin (HbO2) and deoxy-
genated hemoglobin (HbR) changes, which are functional indicator
of brain activity in regional cerebral blood flow, by using light in the
near-infrared range (700-900nm). As in the case which uses brain
signals measured with other methods, some studies have shown ef-
fectiveness of using fNIRS signals to estimate user emotions and
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preferences [6, 7].
In addition, for improvement of preference estimation, we previ-

ously proposed to collaboratively use features extracted from videos
and fNIRS signals [8]. In this method, by using Locality Preserving
Canonical Correlation Analysis (LPCCA) [9], we first project vi-
sual features extracted from videos into the new feature spaces and
maximize the correlation between fNIRS features and visual fea-
tures. Consequently, since the correlation between fNIRS features
reflecting user preferences and visual features is maximized, the new
features (fNIRS-based visual features) also reflect user preferences.
Furthermore, by applying this projection to multiple visual features,
multiple fNIRS-based visual features are computed, and these com-
puted features are fused via Multiview Local Fisher Discriminant
Analysis (MvLFDA) [10]. MvLFDA can fuse features and optimize
the class separation of the fused feature space while considering dif-
ferent contributions and adequately using complementary properties
in multiple features.

In our previous method, MvLFDA is the supervised feature fu-
sion method. However, on the Web, there are very few videos which
users rate [11, 12]. In addition, when only a small number of labeled
samples are available, supervised methods tend to find new feature
spaces which are overfitted to the labeled samples [13]. In order to
reduce the influence of this problem, semi-supervised methods have
been proposed [13, 14]. These methods use unlabeled samples to-
gether with labeled samples. In particular, Song et.al. proposed to
optimize class separation in a feature space using labeled samples
and simultaneously preserve the local structure of the whole feature
space using both labeled and unlabeled samples. Consequently, this
method realized the reduction of overfitting to the labeled samples.
Thus, by introducing the framework to use unlabeled samples to-
gether with labeled samples and preserve the local structure of the
whole feature space to MvLFDA, it becomes possible to extract fea-
tures effective for preference estimation when it is difficult to obtain
a number of labeled samples.

This paper presents a novel method to estimate user preferences
for videos via multiple feature fusion. First, we extract fNIRS fea-
tures from fNIRS signals and multiple visual features from videos.
Next, we project visual features into the space of the fNIRS-based
visual features via LPCCA. In the fNIRS-based feature space, the
correlation between fNIRS features reflecting user preferences and
each visual feature is maximized. In addition, to fuse multiple
fNIRS-based visual features, we newly derive a novel method, i.e.,
semi-supervised MvLFDA (sMvLFDA). sMvLFDA can compute
the fused features while optimizing class separation in the fused
feature space by using labeled samples and preserving the local
structure of the feature space by using both labeled and unlabeled
samples. The derivation of sMvLFDA is the main contribution of
this paper. Consequently, our method realizes successful estimation
of user preferences based on the above non-conventional approach.
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2. MULTIPLE FEATURE FUSION FOR VIDEO
PREFERENCE ESTIMATION

Our method consists of three stages. In the first stage, we extract
fNIRS features from fNIRS signals recorded while users are watch-
ing videos and multiple visual features from videos. In the second
stage, we transform each visual feature into the fNIRS-based visual
features reflecting user preferences by projecting each visual feature
to the new feature spaces and maximizing the correlation between
fNIRS features and each visual feature via LPCCA. In the third
stage, we fuse multiple fNIRS-based visual features via sMvLFDA.
The estimation of user preferences then becomes feasible by using
the fused features. The details of each stage are shown below.

2.1. Feature Extraction

This subsection shows the method to extract fNIRS features and vi-
sual features used in our method.

2.1.1. fNIRS Feature Extraction

First, fNIRS signals are divided into overlapping segments. Next,
from signals in each segment, the following two types of fNIRS fea-
tures are extracted based on [6]:
Time-domain features: Mean, variance, zero crossings, root mean
squared, skewness, and kurtosis.
Time-frequency features: The wavelet coefficients are computed
by applying wavelet decomposition to fNIRS signals. Next, from
these coefficients, the energy values of some frequency bands are
computed. Finally, the relative energies between the energy value of
each frequency band and the total energy value are computed.

Consequently, the means and standard deviations of each fea-
ture are computed over all segments and used as fNIRS features. In
addition, by using Structural Feature Selection with Sparsity [15],
we select only fNIRS features related to preference estimation. Fi-
nally, by using the selected features, we define a fNIRS feature vec-
tor xf ∈ Rdxf , where dxf denotes the number of selected features.

2.1.2. Visual Feature Extraction

First, the following visual features are extracted from each frame of
videos:
CNN features: A 4096 dimensional output from the fc6 layer of
AlexNet [16] pre-trained on ImageNet database [17].
Hand-crafted features: HSV histograms (64 dimension) and Scale
Invariant Feature Transform (100 dimension) [18].

In addition, the mean vector of each visual feature over all
frames of the target video is computed and used as each visual
feature for each video. Finally, we define p th (p = 1, 2, . . . , P )

visual feature vector x(p)
v ∈ R

d
x
(p)
v , where d

x
(p)
v

denotes the di-
mension of p th feature vector, and P is the kind of visual features,
i.e., P = 3.

2.2. Feature Transformation via LPCCA

In this subsection, we explain the method to transform visual fea-
tures into the fNIRS-based visual features via LPCCA. From fNIRS
features and visual features, we first define XF = [xf,1xf,2 · · ·xf,n]

and X
(p)
V = [x

(p)
v,1x

(p)
v,2 · · ·x

(p)
v,n], where n is the number of samples.

Note that we assume that there exist labeled samples and unlabeled
samples in these samples. Next, from the two features, we con-
struct similarity matrices AXF and A

(p)
XV

based on [19], which

realized similarity graph construction which is robust to data noise
and parameter-free by solving a ℓ1 norm optimization problem.
Specifically, we first solve the following optimization problem with
respect to a coefficient vector axf ,i ∈ Rn+dxf

−1:

arg min
axf ,i

||axf ,i||1, s.t. xf,i = Bxf ,iaxf ,i. (1)

In Eq. (1), Bxf ,i = [xf,1 xf,2 · · · xf,i−1 xf,i+1 · · · xf,n Idxf
],

where Idxf
∈ Rdxf

×dxf is the identity matrix. From the obtained
coefficient vector axf ,i, we define the (i, j) th (j = 1, 2, . . . , n)
element of AXF as follows:

(AXF )i,j =


|(axf ,i)j | i > j

0 i = j

|(axf ,i)j−1| i < j

, (2)

where (·)i,j denotes the (i, j) th element of the matrix, and (·)j de-
notes the j th element of the vector. Finally, we redefine the similar-

ity matrix AXF as follows: AXF =
(AXF

+AT
XF

)

2
. The similarity

matrix A
(p)
XV

is computed in the same manner as the computation of

AXF . From the similarity matrices AXF and A
(p)
XV

, we compute
the following matrices:

A
(p)
XFXV

= AXF ◦A(p)
XV

, (3)

AXFXF = AXF ◦AXF , (4)

A
(p)
XV XV

= A
(p)
XV

◦A(p)
XV

, (5)

where “◦” denotes the Hadamard product. Consequently, we com-
pute the projection matrix U

(p)
cca, which projects each visual feature

into the new feature space, by solving the following optimization
problem:

arg max
uxf

,u
(p)
xv

uT
xf

L
(p)
XFXV

u
(p)
xv√

uT
xf

LXFXF uxf

√
u

(p)T
xv L

(p)
XV XV

u
(p)
xv

, (6)

where L
(p)
XFXV

, LXFXF and L
(p)
XV XV

are Laplacian matrices de-

rived from A
(p)
XFXV

, AXFXF and A
(p)
XV XV

as follows:

L
(p)
XFXV

= D
(p)
XFXV

−A
(p)
XFXV

, (7)

LXFXF = DXFXF −AXFXF , (8)

L
(p)
XV XV

= D
(p)
XV XV

−A
(p)
XV XV

, (9)

where D
(p)
XFXV

is a diagonal matrix, and its entries are column sum

of A(p)
XFXV

. In addition, DXFXF and D
(p)
XV XV

are defined in the
same manner. By using the Lagrange multiplier method, Eq. (6) is
converted to the generalized eigen value problem. Thus, by solving
the generalized eigen value problem, the projection matrix U

(p)
cca is

computed as follows:

U (p)
cca = [û

(p)
xv,1

û
(p)
xv,2

· · · û(p)
xv,k

· · · û(p)
xv,d

x̂
(p)
v

], (10)

where û
(p)
xv,k

are the generalized eigenvectors which were sorted
with respect to descending eigenvalue order, and d

x̂
(p)
v

is the dimen-
sion of each fNIRS-based visual feature. Finally, each fNIRS-based
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visual feature x̂
(p)
v,k is computed by projecting x

(p)
v,k via U

(p)
cca as fol-

lows:

x̂
(p)
v,k = U (p)T

cca x
(p)
v,k. (11)

Consequently, by maximizing the correlation between each visual
feature and fNIRS features which reflect user preferences, we can
transform each visual feature to the fNIRS-based visual features. In
our method, since we cannot obtain fNIRS features corresponding
to visual features extracted from test samples, we transform those
visual features into the new features by using U

(p)
cca computed from

training samples.

2.3. Feature Fusion via sMvLFDA

In this subsection, we explain the method to fuse multiple fNIRS-
based visual features. We first define the fused features as follows:
Y = [y1 y2 · · · yn] ∈ Rdy×n, where dy denotes the dimension
of the fused features. In our proposed method, Y consists of the
fused features computed from both training samples and test sam-
ples which are defined as unlabeled samples. Next, by using the
similarity matrix A(p) constructed from each fNIRS-based visual
feature in the same manner as the computation of AXF in 2.2, we
compute the (i, j) th elements of the matrices A

(p)
w and A

(p)
b as

follows:

(A(p)
w )i,j =

{
(A(p))i,j

nc
label(x̂(p)

v,i ) = label(x̂(p)
v,j) = c

0 otherwise
, (12)

(A
(p)
b )i,j =


(A(p))i,j(

1
n
− 1

nc
) label(x̂(p)

v,i ) = label(x̂(p)
v,j) = c

1
n

label(x̂(p)
v,i ) ̸= label(x̂(p)

v,j)

0 otherwise,
(13)

where label(·) denotes a label presented to each sample. From the
above matrices A(p)

w , A(p)
b and A(p), we compute Laplacian matri-

ces L(p)
w , L(p)

b and L(p) in the same manner as the computation of
L

(p)
XFXV

in 2.2, respectively. Note that the Laplacian matrix L(p) is
normalized as follows:

L(p) = I −D(p)−1/2

A(p)D(p)−1/2

, (14)

where I ∈ Rn×n is the identity matrix. In addition, D(p) is a di-
agonal matrix, and its entries are column sum of A(p). From the
obtained Laplacian matrices, we define the following optimization
problem for each feature:

argmin
Y

(1− β)[Tr{Y (L(p)
w − λ1L

(p)
b )Y T}] + β{Tr(Y L(p)Y T)},

(15)

where β is a trade-off parameter, and λ1 is a manually set parameter.
In the first term of Eq. (15), the labeled samples are used to optimize
class separation of the fused feature space, and in the second term, all
samples are used to preserve the local structure in the whole feature
space and reduce overfitting to the labeled samples. In addition, let
(1− β)(L

(p)
w − λ1L

(p)
b ) + βL(p) be L̄(p), and we rewrite Eq. (15)

as follows:

argmin
Y

Y L̄(p)Y T, (16)

In sMvLFDA, we add weights to each objective function in order to
consider different contributions to preference estimation and com-
plementary properties in features and sum over all functions. Con-
sequently, the following optimization problem is defined:

argmin
Y ,w

P∑
p=1

wp(Y L̄(p)Y T) + λ2||w||2, (17)

s.t. Y Y T = I,

P∑
p=1

wp = 1, wp ≥ 0,

where wp is the weight coefficient to consider the different con-
tributions of each feature to preference estimation and explore the
complementary properties in features, and w = [w1, w2, . . . , wp].
The second term is used for regularization.

To solve the above optimization problem, sMvLFDA alterna-
tively optimizes the above objective function with respect to the
fused features Y and the weight coefficients w as follows.

[Update of Y ]

We compute the optimal solution of Y by fixing w. Specifically, we
first define the following optimization problem:

argmin
Y

Tr(Y L̄Y T), s.t. Y Y T = I, (18)

where L̄ =
∑P

p=1 wpL̄
(p). Consequently, we solve Eq. (18) via the

generalized eigen value problem and compute the optimal solution
of Y as follows:

Y = [ŷ1 ŷ2 · · · ŷk · · · ŷdy ], (19)

where ŷk are the generalized eigenvectors of L̄, which were sorted
with respect to descending eigenvalue order.

[Update of w]

We compute the optimal solution of w by fixing Y . We first define
the following Lagrangian function:

F (w, λ) =

P∑
p=1

wpTr(Y L̄(p)Y T)− λ2||w||2 − λ(

P∑
p=1

wp − 1),

(20)

where we differentiate F (w, λ) with respect to wp and λ and set the
results to zero as follows:

∂F (w, λ)

∂wp
= Tr(Y L̄(p)Y T)− 2λ2wp − λ

= 0, p = 1, 2, . . . , P , (21)

∂F (w, λ)

∂λ
=

P∑
p=1

wp − 1

= 0. (22)
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From Eqs. (21) and (22), wp can be obtained as follows:

wp =
PTr(Y L̄(p)Y T)−

∑P
p=1 Tr(Y L̄(p)Y T)− 2λ2

2Pλ2
. (23)

Consequently, from the above alternative optimization, we can ob-
tain the optimal solution of Y . Finally, we train an estimator by
using labeled samples in Y and estimate user preferences for test
samples.

3. EXPERIMENTAL RESULTS

This section presents the experimental results to verify the effective-
ness of our proposed method. We used movie trailers of four gen-
res (“action”, “comedy”, “drama” and “horror”) as stimuli, and the
number of movie trailers in each genre was eight. Thus, the total
number of movie trailers was 32. All movie trailers were collected
from YouTube1. We then separated the movie trailers into training
and testing dataset. Both training and testing dataset consisted of 16
movie trailers, i.e., the number of movie trailers in each genre was
four in each dataset.

In this experiment, five healthy volunteers participated. We ac-
quired fNIRS signals by the fNIRS device (LIGHTNIRS, Shimadzu
Corporation, Japan) and placed 20 channels on the frontal and oc-
cipital regions of the scalp. fNIRS signals were acquired duration of
the following experimental task: (1) relaxing video clip period (20s);
(2) a fixation white cross on a black background (10s); (3) the movie
trailer period; (4) the subjective rating (four levels). Note that while
fNIRS signals were being acquired, participants watched movie
trailers in the training dataset. In addition, participants watched
movie trailers in the testing dataset and presented ratings to those
movie trailers when fNIRS signals were not acquired. Consequently,
we distributed movle trailers rated three or four into class “Like”
and movie trailers rated one or two into class “Dislike”.

In our experiment, we separated fNIRS signals and movie trail-
ers into nonoverlapping segments and used these segments as each
sample. We set the length of the segments to 10s. Note that we
distributed each sample into the same class as corresponding movie
trailers and fNIRS signals.

In our experiment, we used Support Vector Machine (SVM) [20]
as the estimator. We then adopted F-measure as the evaluation mea-
sure. We randomly selected two movie trailers from each class and
defined samples corresponding to selected movie trailers as labeled
samples. On the other hand, we defined samples corresponding to
not selected movie trailers as unlabeled samples. Consequently, we
ran random selections of the labeled samples five times and averaged
F-measure over all selections.

In our experiment, we conducted the following comparison to
confirm the performance of our proposed method.

(a) Comparison with the method which used only visual features

To confirm the effectiveness of using fNIRS signals, we compared
our proposed method with the method which used only visual
features and fused these features via sMvLFDA. Results of this
comparison are shown in Table 1. From the results, we can confirm
that fNIRS-based visual features are effective for the preference
estimation.

(b) Comparison with other feature fusion methods

1https://www.youtube.com/

Table 1. Experimental results to confirm the effectiveness of using
fNIRS signals.

Only visual features
fNIRS features and

visual features
Participant A 0.752 0.791
Participant B 0.541 0.624
Participant C 0.810 0.832
Participant D 0.509 0.601
Participant E 0.586 0.648

Average 0.640 0.699

Table 2. Experimental results to compare the performance of our
method with those of other feature fusion methods

MvLFDA MSE SMSE sMvLFDA
Participant A 0.749 0.784 0.780 0.791
Participant B 0.569 0.632 0.582 0.624
Participant C 0.809 0.827 0.825 0.832
Participant D 0.511 0.567 0.590 0.601
Participant E 0.604 0.618 0.636 0.648

Average 0.648 0.686 0.683 0.699

In this comparison, we first computed multiple fNIRS-based visual
features via LPCCA. To confirm the effectiveness of fusing fNIRS-
based visual features via sMvLFDA, we compared sMvLFDA with
MvLFDA, Multiview Spectral Embedding (MSE) [21], which is the
unsupervised method, and Supervised MSE (SMSE) [22]. Note that
since SMSE can fused features while using labeled samples and
unlabeled samples, we used SMSE as the semi-supervised method.
In addition, in all methods, we constructed similarity matrices based
on [19]. Results of this comparison are shown in Table 2. From
the comparison between the results of the methods which used
sMvLFDA and the other feature fusion methods, we can confirm
that sMvLFDA outperforms the other feature fusion methods. Note
that the p-value of a one-sided paired t-test performed between the
results of sMvLFDA and MSE was 0.0815. Consequently, the effec-
tiveness of fusing fNIRS-based visual features via sMvLFDA were
shown.

4. CONCLUSIONS

In this paper, we have presented a new method to compute features
effective for preference estimation. Our proposed method first ex-
tracts fNIRS features and multiple visual features. Next, we com-
pute the fNIRS-based visual features which reflect user preferences
via LPCCA. In addition, via sMvLFDA, we fuse multiple fNIRS-
based visual features while using both labeled and unlabeled sam-
ples. Consequently, the experimental results have shown the effec-
tiveness of the proposed method.
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