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ABSTRACT

The brain encodes information by neural spiking activities, which
can be described by time series data as spike counts. Latent Vari-
able Models (LVMs) are widely used to study the unknown factors
(i.e. the latent states) that are dependent in a network structure to
modulate neural spiking activities. Yet, challenges in performing
experiments to record on neuronal level commonly results in rela-
tively short and noisy spike count data, which is insufficient to de-
rive latent network structure by existing LVMs. Specifically, it is
difficult to set the number of latent states. A small number of latent
states may not be able to model the complexities of underlying sys-
tems, while a large number of latent states can lead to overfitting.
Therefore, based on a specific LVMs called Linear Dynamical Sys-
tem (LDS), we propose a Reduced-Rank Linear Dynamical System
(RRLDS) to estimate latent states and retrieve an optimal latent net-
work structure from short, noisy spike count data. This framework
estimates the model using Laplace approximation. To further handle
count-valued data, we introduce the dispersion-adaptive distribution
to accommodate over-/ equal-/ and under-dispersion nature of such
data. Results on both simulated and experimental data demonstrate
our model can robustly learn latent space from short-length, noisy,
count-valued data and significantly improve the prediction perfor-
mance over the state-of-the-art methods.

Index Terms— Laplace Approximation, Reduced-Rank Struc-
ture, Dispersion-Adaptive Distribution, Linear Dynamical Systems,
Count-valued data

1. INTRODUCTION

Deciphering the latent structure from high-dimensional time se-
ries data is one of the fundamental problems of Signal Processing,
which has been extensively applied in various fields from social,
economics, to biology science [1, 2, 3, 4, 5]. In such settings, many
studies and theories posit that high-dimensional time series are
noisy observations of some underlying, low-dimensional, and time-
varying signal of interest [6, 7, 8, 9]. Linear Dynamical Systems
(LDS) have been employed to extract a low-dimensional implicit
network structure from multivariate time series data [7, 8, 10, 11],
which captures the variability of the observed data.

However, two main challenges exist when using LDS to retrieve
an optimal implicit network structure. First, the existing models need
a predefined latent dimensionality. In order to ensure the models’
capability, it is typically set to be a large value, which leads to the
difficulties in modeling the short-length high-dimensional time se-
ries data due to overfitting. This modeling problem is troublesome
since the short-length time series data exist in many real-world sce-
narios. For example, in neuroscience, we can only obtain short se-
quences of high-quality neural data in experiments because of the

Fig. 1: Latent trajectories reconstructed from (a) unconstrained dynamics matrix and
(b) reduced-rank dynamics matrix (different colors indicate different simulated trials).
The low-dimensional manifold in (b) is smoother and better structured.

short lifetime of some neurons [12, 13, 14]. In the clinical do-
main, the length of patient clinical data is usually less than 50 be-
cause the hospitalization period for most patients is less than two
weeks [15]. In economics, the econometric multivariate time se-
ries, such as gross domestic product and consumer price index, are
measured quarterly or yearly which results in short-length data [16].
Second, real-world time series data are often count-valued (rather
than real-valued). Therefore, application of standard LDS, which
assumes the observation follows Gaussian distribution, is infeasible.
Examples include multiple spike trains recorded from neural popu-
lations [17], the data of trades on the S&P 100 index [18], to name
just a few. Further extensions on observation model to handle count
nature of the data are necessary.

Hidden Markov Models (HMM) and Linear Dynamical System
(LDS) are two latent variable models. They assume that the latent
variables which make noisy measurements evolves over time. The
only difference is that HMM uses a discrete state variable with arbi-
trary dynamics and measurements, while LDS uses a continues state
variable with linear Gaussian dynamics and measurements. How-
ever, network structures with latent variables are not well studied.
The dynamics matrix in LDS, which represents the dynamics of la-
tent states, also contains structure of latent networks. We focus on
the hypothesis of latent network structure, performing Expectation-
Maximization algorithm to infer latent states trajectories.

Figure 1 demonstrates the advantage of reduced-rank dynamics
matrix with DA distribution in recovering low dimensional mani-
folds from short-length, noisy count-valued time series data. The
observation is 40-dimension (i.e. 40D) time series data, which is
modeled with a 10D dynamics matrix (same initial states). It shows
that our method successfully retrieves three intrinsic dimensional-
ities from the dynamics matrix, leading to a smoother and better
structured manifold indicated by the three dimensional curves, while
the method with unconstrained dynamics matrix fails. In summary,
our contributions are three-folds:

• We can reduce redundant dimensions of latent states in the
reconstruction of a more precise latent network structure.

• We introduce a count-valued exponential family distribution
(called DA distribution) to capture the dispersion nature of
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count data.

• We develop a Laplace approximation inference method to
have tractable solutions for proposed model.

The rest of this paper is structured as follows. In Section 2, we gen-
erally review linear dynamical system and several works to the prob-
lems of inference and learning in LDS. In Section 3, we present our
algorithm. In Section 4 and 5, we present an empirical evaluation.
Finally, in Section 6, we conclude.

2. BACKGROUND AND RELATED WORK

We present a framework for both top-down assumption on latent
network structure and bottom-up data-driven approach for latent
states inference and parameters learning. The framework works by
requesting only short-span data to efficiently train models, shut-
ting down unnecessary latent dimensions. The hypothesis of la-
tent network structure efficiently avoids overfitting problem with
high-dimensional latent states in learning step; Inference of Non-
Gaussian state space model is also a challenge. Instead of using
simulation-based methods, such as particle filtering, to do the in-
ference, Laplace approximation becomes more computationally
efficient. We experimentally evaluate our framework against several
baselines on synthetic data, and show that it is able to inference
latent variables and learn parameters with high accuracy; also the
overfitting problem is avoided with good prediction accuracy.

Linear Dynamical System (LDS) models real-valued multivari-
ate time series (MTS) {yt ∈ Rq}Tt=1 using latent states {xt ∈
Rn}Tt=1:

xt|xt−1 ∼ N (xt|Axt−1, Q), (1)
yt|xt ∼ N (yt|Cxt, R). (2)

Eq. 1 represents state dynamics, and Eq. 2 is the observation model.
Briefly, {xt} is evolved via a dynamics matrix A ∈ Rn×n. Obser-
vations {yt} are generated from {xt} via a emission matrix C ∈
Rq×n. These two processes have Gaussian noise with mean 0 and
covariance matrices Q and R respectively. The complete set of the
LDS parameters is Ω = {A,C,Q,R,x0, Q0}, and learned from MTS
data using Expectation-Maximization [19] or spectral learning [20].

Various regularization methods have been proposed for both
time series modeling and prediction tasks with LDS [21]. These
can be divided into three categories: (1) state regularization; (2)
innovation regularization; and (3) parameter regularization.

Our method is different from category (1) and (2) because both
of them learn a sparse representation for latent states {xt}Tt=1 while
they assume all parameters of LDS as a priori. While our method be-
longs to the same category (3) as the stable LDS proposed by Boots
et al. [22], we focus on finding an appropriate state space and prevent
overfitting given a small amount of MTS count data.

For learning LDS model from count observations, Busing et al.
proposed Poisson Linear Dynamical Systems (PLDS) and to learn
it using spectral learning method [20] or variational inference. The
Poisson assumption of count data, while offering algorithmic con-
veniences, implies the conditional mean and variance of count data
are equal. This property is improper in some analysis of count data,
which are observed to be either over- or under-dispersed (variance
greater or less than mean). Thus, it is crucial to develop a gen-
eral observation distribution to capture over/equal/under-dispersion
of count data.

To address these needs, we employ a count-valued exponential
family distribution (weighted Poisson distribution), which is superior

to current methods in two aspects: (i) adaptive dispersion, where a
log-convex/linear/concave weight function can produce the expected
over/equal/under-dispersion; (ii) flexible setting, with a variety of
previous work are derived as special cases under this distribution.

3. REDUCED-RANK LINEAR DYNAMICAL SYSTEM

3.1. Laplace Approximation

We aim to characterize the full posterior distribution of latent states
given the observations p(x1:T |y1:T ), which is not a well-analyzed
distribution such as Gaussian distribution. Hence, we implement a
Gaussian approximation for it. Denote x = vec(x1:T ) and y =
vec(y1:T ), then p(x|y) ≈ q(x|µ,Σ) = N (x|µ,Σ). The mean
µ and the inverse covariance matrix Σ−1 can be found because the
log-density of approximated Gaussian distribution is unimodal,

µ = argmaxx log q(x|µ,Σ)

Σ−1 = −∇2
x log q(x|µ,Σ). (3)

The approximated Gaussian distribution q(x|µ,Σ) can be obtained
via p(x|y).

3.2. Prior on Dynamics Matrix

In order to recover the intrinsic dimensionality from MTS datasets
through the rank of dynamics matrix A, we shall choose specific
priors which can induce the desired low-rank property. We have two
choices of inducing a low-rank dynamics matrix: (1) a multivariate
Laplacian prior and (2) a nuclear norm prior as shown in Table 1:

Prior Name Prior Form Regularization
Multivariate Laplacian ∝ exp(−β1||Ai||2) β1||Ai||2

Nuclear norm ∝ exp(−β2||A||∗) β2||A||∗

Table 1: Prior choices for dynamics matrix

[Multivariate Laplacian prior] It assumes every row in dynam-
ics matrix A is independent of each other and has the multivariate
Laplacian density. Also in order to avoid overfitting, we introduce a
multivariate Gaussian prior to each element inA , which leads to the
ridge regularization. Then, we combine the multivariate Laplacian
prior and Gaussian prior to get a new prior pML(A), as

log pML(A) = −β1
n∑
i=1

‖Ai‖2 −
β2
2
‖A‖2F + const, (4)

where β1,β2 are regularization parameters. {Ai}ni=1 indicates rows
of A. ‖ · ‖2 and ‖ · ‖F are `2 and Frobenius norm.
[Nuclear norm prior] It can be regarded as a convex relaxation of
the number of non-zeros eigenvalues (i.e.,the rank) of the dynamics
matrix A. We get an alternative prior pNN (A) by applying nuclear
norm density and multivariate Gaussian to dynamics matrix, as

log pNN (A) = −β3‖A‖∗ −
β4
2
‖A‖2F + const, (5)

where ‖ · ‖∗ is nuclear norm. β3, β4 are regularization parameters.
{βi}4i=1 are selected (in all experiments) by the internal cross vali-
dation while optimizing model’s predictive performance. We impose
pML(A) and pNN (A) separately to the learning process, and derive
two methods to optimize a low-rank dynamics matrix.
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Fig. 2: (a) The mean and variance of theDA distribution with different choices of the function w(·). With a fixed logw(·), increasing θ can drive mean and
variance to be larger (darker dots); (b) Common count distributions are special cases ofDA distribution by parameterizing θ and w(·).

3.3. Dispersion-Adaptive Model

For count-valued observations, we define the DA distribution as the
family of count-valued probability distribution:

pDA(Y = k; θ, w(·)) =
w(k) exp(θk)

k!E[w(Y )]
, k ∈ N (6)

where θ ∈ R and the function w(·) : N → R parameterizes the
distribution, and E[w(Y )] =

∑
k∈N

w(k) exp(θk)
k!

is the normalizing
constant. It can be viewed as an extension of Poisson distribution
with a weight function w(·). Figure 2 (a) demonstrates different
w(·) functions model the dispersion of count data, and controlling θ
can adjust the mean value of DA distribution. As shown in Figure 2
(b), we derive many of the commonly used count-data distributions
as special cases of DA, by restricting the w(·) function and θ to
have certain parametric form. Figure 2 shows that DA offers a rich,
flexible exponential family for count data, and allows w(·) and θ to
be interpretable for capturing statistics of count-valued data.

3.4. Reduced-Rank Linear Dynamical Systems

We apply our method to model time series data (spike counts)
recorded from brain neurons, and it is straightforward to extend
it to describe and interpret other count-process observations. De-
noting yit,r as the spike count of neuron i ∈ {1, . . . , q} at time
t ∈ {1, . . . , T} on experimental trial r ∈ {1, . . . , R}, we as-
sume the spiking activities of neurons are noisy count observations
of underlying low-dimensional latent states xt,r ∈ Rn(n < q)
(modulating mean value of DA distribution) and define the DA
observation model as:

yit,r|xt,r ∼ DA(c>i xt,r, wi(·)). (7)

We parametrize θ = c>i xt,r , where C = [c1, · · · , cq]> ∈ Rq×n is
emission matrix mapping latent space to observation space. wi(·) is
a neuron-specific function capturing the dispersion property of each
time series. The evolution of latent state xt,r is described as:

x1,r ∼ N (x1,r|x0, Q0),

xt,r|xt−1,r ∼ N (xt,r|Axt−1,r +But−1,r, Q). (8)

Here, x0 and Q0 are the mean and covariance of the initial state
and Q is the covariance of the innovations. External input ut,r with
coupling effects B are considered in the process of latent evolution.
Meanwhile, reduced-rank structures pML(A) and pNN (A) are im-
posed on dynamics matrix A.

RRLDS is illustrated in Figure 3 along with two-stage model
structure: The first stage includes reduced-rank structures composed

on the dynamics matrix A, which governs the evolution of latent
states xt. The second stage maps latent states xt onto responses yt
via DA observation model, which learns the dispersion property.

xt yt

xt+1 yt+1

Reduced
rank

Latent
states

Dispersion
adaptive Response

k

n A

n M k

=
n

+
Sparse S

Stochastic
process

N
n

Fig. 3: Illustration of the two stages of RRLDS.

Expectation-Maximization (EM) algorithm is adopted for es-
timating latent states x1:T,r (E-step) and parameters (M-step).
Since the posterior distribution of x1:T,r has no analytical solution,
Laplace approximation [23] is implemented. Maximum a posteriori
(MAP) estimations of dynamics matrix for two reduced-rank struc-
tures are solved using Second Order Cone Program (SOCP) [24]
and generalized gradient descent algorithm [25].

3.5. Analysis of w/o Regularization

Here, we analyze the effect of regularization applied to dynam-
ics matrix. The more data available, the influence of unnecessary
dimensions will be insignificant to parameter estimation; instead,
when the data sample is small, the regularization will help im-
prove the performance remarkably. We define (v1, v2, . . . , vj)
and (λ1, λ2, . . . , λj) are eigenvalues/vectors of dynamics matrix
A ∈ Rn×n. Latent variables x ∈ Rn×n, each column of x can be a
linear combination of (v1, . . . , vj), as

x = [x1,x2, . . . ,xn] =

[
n∑
j=1

c1jvj ,

n∑
j

c2jvj , . . . ,

n∑
j=1

cnj vj

]
.

{cij}ni=1 are the coefficients. Thus the action ofA on x is determined
by the eigenvalues/vectors as

Ax =

[
A

n∑
j=1

c1jvj , A

n∑
j=1

c2jvj , . . . , A

n∑
j=1

cnj vj

]
,

=

[
n∑
j=1

c1jλjvj ,

n∑
j=1

c2jλjvj , . . . ,

n∑
j=1

cnj λjvj

]
.
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Hence, the action ofA on x is determined by the estimation of eigen-
values/vectors. The more data we have, the eigenvalue/vector pair
from unnecessary dimensions ofAwill be estimated close to the true
eigenvalue/vector, thus, the decomposition space constructed by the
eigenvectors will be similar with or without regularization.

4. SIMULATED RESULTS

To demonstrate the generality of DA and verify our algorithmic im-
plementation, we first test inference and learning method on exten-
sive simulated data.

4.1. Parameter Estimation

Figure 4 (a) compares the eigenvalue spectrum of the estimated (by
RRLDS-ML/-NN (w/o DA), PLDS) and the true dynamics matrices.
The true rank of dynamics matrix is 10 (# blue circles), while the
number of latent states is initialized to be 20, larger than the rank.
The experiment is performed on the simulated data y with 40 se-
quences, each of which has 100 bins. It verifies that RRLDS-ML/NN
(w/o DA) indeed result in a low-rank estimation of the dynamics ma-
trix, with higher accuracy than PLDS. Given the estimated parame-
ters, Figure 4 (b) plots the elements of stationary covariance ma-
trix [26] for the predicted (using RRLDS-NN) and true count data,
also demonstrating the accuracy of our estimation.
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Fig. 4: (a) The spectrum of estimated dynamics matrices using RRLDS-ML (red tri-
angle), RRLDS-NN (yellow square) and LDS with Poisson observation model (PLDS,
purple cross). (b) Scatter plot of the elements in stationary covariance matrix of pre-
dicted and true count data.

5. EXPERIMENTAL RESULTS

We have taken the real dataset HC-3 [27]. The spiking activity of
multiple neurons are recorded while the rat is running in a simple
maze in which different visual markers are set up. The position of
the rat is also recorded. Here, we have tempted to predict the neuron
activity (spike count data) based on position.

5.1. Prediction performance of neural activities

Table 2 shows prediction performance (mean square error) of six
LDSs (RRLDS-NN/-ML, PLDS, SubspaceID, Stable LDS, and
LDS) with different predefined number of latent states for Task #1.
As shown by the mean square error, while a single latent state cannot
model the system well, RRLDS-NN/-ML significantly (p < 0.001,
paired t-test) outperform the alternatives.

5.2. Retrieval of intrinsic dimensionality

We test the retrieval of intrinsic dimensionality for the complex neu-
ral system based on the estimated rank of dynamics matrix. In Figure
5, each subfigure plots the normalized eigenvalues of the dynamics

Table 2: Mean Square Error with Different Number of Latent States

# latent states 1 5 10 15 20 30

RRLDS-NN 6.72 3.92 3.41 3.37 3.21 3.52
RRLDS-ML 6.74 3.93 3.43 3.39 3.22 3.55

PLDS 7.35 4.50 3.96 3.93 3.45 4.32
SubspaceID 7.39 4.92 4.41 4.37 4.21 4.53
Stable LDS 7.67 5.02 5.91 5.40 5.11 5.32

LDS 8.21 7.22 8.41 8.17 7.21 7.64

matrices learned from different experimental trials. It is observed
that given the same task, the rank of the optimized dynamics matrix
consistently converges to 5 or 6 for Task #1 and 10 or 11 for Task
#2, regardless of varying the number of latent states (10, 20 or 30).

This result provides a valuable insight into the internal factors of
the neural system: the spiking activities in hippocampus are intrin-
sically characterized by an underlying low-rank dynamical system.
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Fig. 5: Latent state space recovery from neuroscience data using RRLDS-NN. Top row:
Task #1; bottom row: Task #2. Different lines in each subfigure represent different
trials. 10, 20, and 30 latent states are selected for testing robustness of RRLDS.

6. CONCLUSION

Network representations derived from neural spiking activities can
provide a simple measure of complex dynamics. With observed
spike count data to be noisy and stochastic, a latent network com-
posed by latent states (i.e. unknown factors) governing observed
spiking activities could be utilized in modeling. Linear Dynami-
cal System (LDS) is able to extract a low-dimensional state space
which is unobserved for observed neurons. This is crucial in effec-
tive visualization and finding a latent network structure governing
observations. In this paper, we analyzed latent network structure
by applying prior distributions on dynamics matrix, and developed
a framework for estimating states and parameters. We expect our
method can benefit the learning of more concise, structured, and in-
terpretable patterns from social science and financial data, which are
often observed to be short-length, noisy and count-valued.
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