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ABSTRACT

Automatic seizure identification plays an important role
in epilepsy evaluation. Most existing methods regard seizure
identification as a classification problem and rely on labelled
training set. However, labelling seizure onset is very ex-
pensive and seizure data for each individual is especially
limited, classifier-based methods are usually impractical in
use. Clustering methods could learn useful information from
unlabelled data, while they may lead to unstable results given
epileptic signals with high noises. In this paper, we propose
to use Gaussian temporal-constrained k-medoids method for
seizure state segmentation. Using temporal information, the
noises could be effectively suppressed and robust clustering
performance is achieved. Besides, a new criterion called
signed total variation (STV) which describes temporal in-
tegrity and consistency is proposed for temporal-constrained
clustering evaluation. Experimental results show that, com-
pared with the existing methods, the k-medoids method with
Gaussian temporal constraint achieves the best results on both
F1-score and STV.

Index Terms— Clustering, temporal constraint, epilepsy,
sequence segmentation

1. INTRODUCTION

Epilepsy is a serious brain disorder which affects about 50
million people worldwide [1, 2]. Intracranial Electroen-
cephalography (iEEG) [3] is one of the most useful tech-
niques to diagnose epilepsy, to predict seizure [4], and to
localize the seizure onset zone. Seizure state identification is
an important procedure in epilepsy evaluation. Commonly,
this work is performed by visually inspection of clinical doc-
tors, which could be highly tedious and time-consuming.
Therefore, reliable automatic seizure detection is of high im-
portance, which would facilitate seizure diagnosis and has
great potential in clinical applications.

Although efforts have been made, robust seizure identi-
fication is still challenging. Most existing methods regard
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seizure identification as a classification problem and rely on
labeled data [5], making them impractical in clinical applica-
tions. Labeling epileptic signals could be very expensive and
seizure data for each individual is especially limited. There-
fore, classifier-based methods could not be well trained with
such small training set.

Recently, some methods have been proposed to track
epileptic states using unsupervised algorithms [6, 7, 8, 9]. In
their methods, brain states were represented by brain con-
nectivities [10], and state segmentations were achieved using
clustering approaches. The unsupervised methods do not
rely on labelled data so that they were promising for the
clinical use. However, the performance is usually unstable
because the epileptic networks change continuously. Thus,
the temporal information is important to find and distinguish
the different states, which was not sufficiently taken into ac-
count in most existing clustering methods [7, 8]. In addition,
noises in iEEG signals also have a negative impact to the
unsupervised approaches.

Since the dynamics of epileptic networks change gradu-
ally over time, the networks at different time are not suitable
to be considered as the time-independent clustering samples.
Moreover, it is difficult to extract effective features represent-
ing epileptic states from noisy signals [11] without the help
of temporal information. In this case, we consider the follow-
ing two aspects to add the temporal constraint to clustering
method [12, 13]. On one hand, the adjacent samples could be
segmented into a state with a higher probability than distant
samples. On the other hand, two groups of networks which
are clustered together should be divided into two states if they
are apart over time.

In this paper, we propose to use Gaussian temporal-
constrained k-medoids method for seizure state segmentation.
Using temporal information, the noises could be effectively
suppressed and robust clustering performance is achieved.
Besides, a new criterion called signed total variation (STV)
which describes temporal integrity and consistency is pro-
posed for temporal-constrained clustering evaluation. Ex-
perimental results show that, compared with the existing
methods, the k-medoids method with Gaussian temporal con-
straint achieves the best results on both F1-score and STV.
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Fig. 1. The framework of our method

2. OUR METHOD

The proposed method is composed of three functional blocks:
signal feature extraction over time, similarity matrix compu-
tation with temporal constraint, and epileptic states segmen-
tation. Each of functional blocks is described in the following
sections and the detailed framework of our method is shown
in Figure 1.

2.1. Signal Feature Extraction

It is important to extract effective features from the multi-
channel iEEG signals for epileptic seizure analysis. The
eigenvector centrality (EVC) [14] is employed as our signal
feature extraction method which is computed from connec-
tivity matrix denoted as C. Coherence [15] is a widely used
measure to compute the functional connectivity between sig-
nals. Coherence is estimated by the spectral density function
and the value Ci,j between ith and jth channel of signals
could be formulated as below:

Ci,j =
|Pi,j |2

Pi,iPj,j
, (1)

where Pi,j is the cross-spectral density function and Pi,i, Pj,j

are the auto-spectral density function. The calculated values
are elements of connectivity matrix C. With these connectiv-
ity matrices, the brain networks are built to carry out the anal-
ysis of network dynamics. The eigenvector centrality (EVC)
is used to measure the importance of vertices in brain net-
works, which is the foundation of the following methods. The
EVC considers not only the number of connections from one
vertex to other vertices in brain networks but also the strength
of them. The EVC could be formulated as below:

C ∗ EV C = λmax ∗ EV C, (2)

where the EVC is the leading eigenvector centrality corre-
sponding to C and λmax is the maximum eigenvalue of this
matrix.

2.2. Similarity Matrix Computation with Temporal Con-
straint

Given a period of multi-channel signals, the coherence matri-
ces are computed by sliding windows method and we could
obtain a sequence of connectivity matrices. A sequence of
EVCs denoted as {EV Cti}, i = 1, 2, ..., N, computed from
connectivity matrices are data samples for analysis. Our
goal of epileptic states segmentation is to temporally segment
the epileptic brain network dynamics into some consecutive
states. Specifically, we want to segment the EVC sequence
into some clusters. The EVCs in the same clusters are sim-
ilar and the EVCs in different clusters have low similarities.
But the existing segmentation methods neglect the temporal
relationship which is important for signal data and beneficial
for segmentation results. The EVCs which are close in time
dimension should be more similar comparing to the ones far
away. Hence, the temporal constraints between EVCs need to
be considered. The temporal sequence index scores are used
to compute the similarity between EVCs with a Gaussian
constraint or a constant constraint. The similarity Sti,tj be-
tween EV Cti and EV Ctj with Gaussian temporal constraint
could be formulated as below:

Sti,tj = dti,tj ∗ exp(−
(ti − tj)2

2 ∗ σ2
), (3)

where the dti,tj denote the classic similarity corresponding
to Euclidean distance between EV Cti and EV Ctj , σ is the
decay parameter which controls the decreasing ratio of simi-
larity as the temporal interval increasing. The similarity with
constant temporal constraint could be formulated as below:

Sti,tj =

{
dti,tj for |ti − tj | < L,

0 otherwise.
(4)

where the L is a constant. The similarity matrix S of EVCs
in a period of time could be constructed in this way.

2.3. Epileptic States Segmentation

With the similarity matrix S, the clustering method is used
to segment the EVCs into clusters in which the EVCs are
consecutive in time dimension. We suppose that the clus-
ters could reflect different epileptic states. We choose the
k-medoids [16] algorithm to do the segmentation part. Un-
like the k-means algorithm, the k-medoids algorithm chooses
samples existed as centers. Since we could not consider the
temporal constraint on the EVCs, and the centers chosen by
k-means may not appear in our EVC sequence, we could
employ the k-medoids with S which contains temporal con-
straints. K-medoids algorithm is more robust to noise and
outliers compared to k-means.
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Fig. 2. A: The sequence of eigenvector centralities (EVCs)
over time computed from 6-channel iEEG signals. B: origi-
nal similarity matrix. C: similarity matrix with temporal con-
straint. The seizure is start at the 61 seconds and end at the
137 seconds.

3. EXPERIMENTAL RESULTS

In this section, experiments are carried out to verify the effec-
tiveness of our method. The experiments include three parts:
(1) we visualize the influence of the temporal constraint on
the similarity computation; (2) we introduce an evaluation
criterion to analyze the results; (3) we compare the segmen-
tation performance among Gaussian temporal-constrained
clustering method, constant temporal-constrained clustering
method, k-medoids and k-means.

3.1. Dataset and Settings

The Freiburg dataset which contains iEEG recordings of 21
patients suffering from intractable focal epilepsy is used to
evaluate the methods. The channel number of the iEEG data
is 6 and the sampling rate is 256Hz. The iEEG signals called
ictal and interictal which contain seizure onset data and pre-
ictal data are available for each patient. In our experiment,
the data we used are clipped from 60 seconds prior to seizure
onset to 60 seconds after seizure ends. Thus, each period of
our experimental data contains a pre-ictal state, an ictal state,
and a post-ictal state. We take 13 seizures from 4 patients
(patient 1-4). In the computation of connectivity matrices, the
window slides along the time axis with a stride of 1 second,
thus there is no overlap between adjacent sub-segments. The
number of clusters is set as 3, because pre-ictal, ictal, post-
ictal are primary states and other refined states are not to be
discussed in our experimental data. The parameter σ2 is set
to 500 and L is set to 30.

3.2. Similarity Matrix Visualization

In the similarity matrix computation, the sequence of EVCs:
{EV Cti}, i = 1, 2, ..., N has N samples which take pair-
wise computation. For N ∗N similarity matrix S, all the en-
tries in S are greater than 0 and the diagonal entries are equal
to 1. A sequence of EVCs is shown in Figure 2A. Figure
2B shows the original similarity matrix computed from 2A
without the temporal constraint. The similarity matrix exam-
ple which is restricted by temporal relation is demonstrated in
Figure 2C. It is clear that the values in similarity matrix are
suppressed in the bottom left corner and upper right corner in
Figure 2C. These small values reflect that EVCs at these posi-
tions are less similar after adding temporal constraint. Thus,
the similarities are reduced between the EVCs with long time
intervals.

3.3. Evaluation Criteria

In the segmentation, we associate the EVCs with clustering
labels, which could be formulated as below

li = L(EV Cti), (5)

where L(.) denotes the clustering algorithm and for conve-
nience we use labels taken from positive integer. So we get
the following formulation:

li ∈ {1, 2, ...,K}, (6)

where K is the number of clusters. For evaluation, we em-
ploy precision and recall criteria similar to other segmentation
tasks:

Recall =
TP

TP + FN
, (7)

Precision =
TP

TP + FP
, (8)

where TP (true positives) represents the number of EVCs
during seizure detected by our method correctly, FP (false
positives) represents the number of EVCs not during seizure
wrongly detected by our method and FN (false negatives)
represents the number of EVCs during seizure not detected
by our method. The F1 score is used in our experiments too,
which is the harmonic mean of precision and recall.

To evaluate the performance of the clustering results for
temporal segmentation tasks, we propose a new evaluation
criterion STV(.), which is inspired by the total variation (TV)
[17] of a sequence Eq.(9).

TV (l) =

N∑
i=1

|li+1 − li|, (9)

The value of TV is the variation of the states along the time
dimension. The more variation between adjacent states means
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Fig. 3. The epileptic states segmented by k-medoids with
Gaussian temporal constraint, with constant temporal con-
straint, without temporal constraint and k-means. The seizure
is start at 61 seconds and end at 137 seconds, which is marked
by two red line. Three corresponding epileptic states are: pre-
ictal, ictal, post-ictal, which are labelled by state0, state1 and
state2.

the greater TV value. But the calculation of TV is not suitable
for our segmentation tasks because the li is just a sign not a
value. In our task, we modify this function as below:

STV (l) =

∑N
i=1 |sgn(li+1 − li)| −K + 1

N −K
, (10)

where we use the function STV (.) to denote this new score
and the sgn(.) denotes the sign function. The STV (l) is in
[0, 1] and lower value means the better performance.

3.4. Comparison of Performance

In this experiment, we compare the performance among
the k-medoids with Gaussian temporal constraint (km-G),
the k-medoids with constant temporal constraint (km-C),
k-medoids and k-means. First, we analyze the results of
state segmentation by the four methods in a seizure which is
shown in Fig 3. From this figure, we could find that the states
clustered by k-medoids and k-means methods are unstable
because there are many obvious clustering states jumping in
small time intervals. While the results of km-G method do
not have the sudden hopping states and 3 states are clearly
segmented over time. Moreover, the segmented seizure onset
state is in agreement with the actual time and the clustering
results are continuous in each state, which keep the tempo-
ral integrity and consistency and are much better than other
results. More experimental results will be discussed below.

To quantitatively evaluate the comparison performance in
all experimental data, we use the evaluation criteria above and
the comprehensive performance comparison is presented in
Table 1. From the table, we could find km-G achieve the best
recall, F1 and STV results and the recall is almost two times

Table 1. Segmentation performance .
Method km-G km-C k-medoids k-means

Recall 84.48% 8.62% 22.41% 20.69%

Precison 27.07% 3.60% 13.83% 15.19%

F1 41.00% 5.08% 17.11% 17.53%

STV 0.01 0.06 0.10 0.09

Recall 59.61% 31.20% 37.60% 38.16%

Precision 89.17% 98.25% 77.59% 76.54%

F1 71.45% 47.36% 50.66% 50.93%

STV 0.00 0.01 0.08 0.07

Recall 60.42% 59.72% 46, 53% 3.74%

Precision 88.78% 85.15% 90.54% 33.33%

F1 71.90% 70.20% 61.47% 6.29%

STV 0.00 0.01 0.05 0.09

Recall 70.59% 36.97% 32.49% 34.17%

Precision 87.80% 86.84% 54.72% 69.32%

F1 78.26% 51.87% 40.77% 45.78%

STV 0.00 0.01 0.06 0.06

? 4 group of performance criteria values are obtained by
experimenting on data of 4 patients respectively.

higher than other methods in all data. Though, km-C and
k-medoids respectively obtain a little better precision value
(98.25%, 90.54%) than km-G (89.17%, 88.78%) in two cases,
their corresponding recall values are low. Thus, km-G only
suffers insignificant performance drop on precision in these
two cases. We could also find that km-G and km-C methods
obtain better STV results than k-medoids and k-means, which
means temporal constraint is helpful to keep the states con-
tinuous. Besides, we could also find km-G method suppress
more noise than other methods by achieving the best STV
value, which can be also verified from Fig 3. From the discus-
sion, we could find km-G method outperform other methods
and is effective for epileptic states segmentation.

4. CONCLUSION

In this paper, we consider the epileptic states segmentation
method with temporal constraints. With the temporal infor-
mation, this method suppresses the noise and enhances fea-
tures of signals over time and improves the segmentation per-
formance. The new performance criterion STV describing the
temporal integrity and consistency is helpful to analyze the
results of segmentation in practice. The experimental results
show the effectiveness of the k-medoids method with Gaus-
sian time constraint.
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