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ABSTRACT

Identification of cell subclasses using single-cell RNA-Sequencing
(scRNA-Seq) data is of paramount importance since it uncovers the
hidden biological processes within the cell population. While the
nonnegative matrix factorization (NMF) model has been reported to
be effective in various unsupervised clustering tasks, it may still pro-
duce inappropriate results for some scRNA-Seq datasets with hetero-
geneous structures. In this paper, we propose the use of an orthog-
onally constrained NMF (ONMF) model for the subclass identifica-
tion problem of scRNA-Seq datasets. The ONMF model in general
can provide improved clustering performance, but is challenging to
solve. We present a computationally efficient algorithm based on op-
timization techniques of variable splitting and alternating direction
method of multipliers (ADMM). Through two scRNA-Seq datasets,
we show that the proposed method can yield promising performance
in identifying cell subclasses and detecting key genes over the ex-
isting methods. Moreover, the key genes identified by the proposed
method are shown biologically significant via the gene set enrich-
ment analysis.

Index Terms— Cell subclass identification, single-cell RNA-
Seq, orthogonal nonnegative matrix factorization, unsupervised
clustering, gene extraction.

1. INTRODUCTION

Identification of cell subclasses and corresponding biological factors
is of paramount importance for studying the hidden biological pro-
cesses within a cell population. The subclasses detected may expose
some previously undefined cell subtypes [1] or reveal the process
of cell differentiation [2]. Meanwhile, the technique of single-cell
RNA-Sequencing (scRNA-Seq) has been used recently to detect het-
erogeneity within the cell population at a high resolution [3]. Specif-
ically, a group of single cells are clustered in an unsupervised fash-
ion to elucidate cell subclasses and identify key genes. However,
due to the ubiquitous noise in scRNA-Seq data [4], the task of un-
supervised clustering on a group of seemingly similar cell samples
remains challenging.

Numerous clustering methods have been applied to bioinfor-
matics for classifying cells based on gene expression, including K-
means, hierarchical clustering, principal component analysis (PCA)
and nonnegative matrix factorization (NMF), to name a few. Among
them, NMF recently gains significant attention in various aspects of
computational biology [5], including molecular pattern discovery,
class comparison and prediction, cross-platform and cross species
analysis. More importantly, it has been shown to be a powerful tool
to detect subclasses among cell samples due to its higher cluster-
ing accuracy and ability to extract key genes associated with each

subclass [3, 6, 7, 8]. Despite of these successful examples, NMF
may still fail in clustering some datasets with heterogeneous struc-
tures. Recently, it has been found that the orthogonally constrained
NMF (ONMF) formulation [9, 10] is closely related to the K-means
clustering and can provide improved clustering performance in vari-
ous data mining tasks [11, 12, 13]. However, ONMF is less noticed
in the literature of biological data analysis [14, 15], especially for
scRNA-Seq datasets.

In this paper, we are interested in the use of ONMF for cell sub-
class identification and key gene extraction in scRNA-Seq datasets.
Unfortunately, due to the orthogonality constraint, the ONMF for-
mulation is much more challenging to solve than NMF. Existing al-
gorithms for ONMF include the method by [9] which combines the
multiplicative rule [16] and the penalty method in optimization, and
augmented Lagrangian (AL) based methods [10, 17]. However, nu-
merical experiences suggest that the non-parametric method in [9]
cannot provide a good trade-off between the low-rank approxima-
tion accuracy and satisfaction of the orthogonality constraint. Thus
the orthogonality constraint cannot be satisfied with high accuracy in
general. The AL methods [10, 17] are less computationally efficient
since they involve solving complicated subproblems.

To overcome these issues and inspired by the splitting of orthog-
onality constraint (SOC) method in [18], we present a new method
based on the optimization techniques of variable splitting and al-
ternating direction method of multipliers (VS-ADMM) [19] for the
ONMF formulation. Specifically, in VS-ADMM, the updates of
variables all have simple closed-form solutions and therefore are
computationally efficient. Moreover, the VS-ADMM is amenable
to yield near-orthogonal solutions, which is crucial for unsupervised
clustering tasks. By considering two scRNA-Seq datasets, we ex-
amine the performance of the proposed VS-ADMM algorithm for
cell subclasss identification and key gene extraction and perform
comparison with the existing methods. Numerical results show that
the proposed method yields superior performance over the existing
methods. More importantly, the performed gene set enrichment anal-
ysis show that the key genes associated with each subclass as identi-
fied by the proposed method have significant biological meanings. In
particular, for the bladder cancer dataset provided by the Institute of
Urological Surgery of Shenzhen University, the extracted key genes
are clearly responsible for known characteristics of cancer cells.

2. PROPOSED METHOD
2.1. NMF and ONMF Formulation

We consider a scRNA-Seq data set consisting of the expression lev-
els of M genes of N cell samples. The data set is denoted by the
non-negative matrix X ∈ RM×N

+ . Typically, M � N since the
number of cells is usually small compared to the number of genes.
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The NMF model has been found to be effective in numerous un-
supervised learning tasks, including cell subclass identification for
some scRNA-Seq datasets [3]. For the clustering task, the use of
NMF is to find a low-dimensional representation of X via low-rank
approximation, in order to improve both the computational and clus-
tering performance. The NMF decomposes X into two nonnegative
matrix factors W ∈ RM×K

+ and H ∈ RK×N
+ so that X ≈ WH,

where K � min{N,M} is the reduced dimension. Then the low-
dimensional matrix H is used as an input to classical clustering
methods such as K-means and hierarchical clustering. The matrix
decomposition is implemented via solving the following optimiza-
tion problem

min
W,H

‖X−WH‖2F

s.t. W ≥ 0,H ≥ 0,
(1)

where ‖ · ‖F denotes the Forbenius norm and W ≥ 0 (H ≥ 0)
means that all elements of W (H) are nonnegative [16].

In fact, it is known that the NMF model above has a strong con-
nection with K-means [9]. Specifically, letK be the number of clus-
ters, and let

[H]k,n =

{
1
Nk

if cell n belongs to cluster k,

0 otherwise
(2)

for all k = 1, . . . ,K, and n = 1, . . . , N , where Nk is the number
of cells assigned to cluster k. Then X ≈WH can be interpreted as
that each of the N cell samples is approximated by the kth column
of W , [w1, . . . ,wK ] if the cell is associated with cluster k. The
column vector wk is therefore the centroid of the kth cluster if wk

is the one that minimizes the average Euclidean distances of all cells
associated with cluster k. Note that (2) is equivalent to

HHT = IK , [H]k,n ∈ {0,
1

Nk
}, ∀k, n, (3)

where IK is the K × K identity matrix. Thus the NMF model in
(1) can be regarded as a relaxed formulation for K-means cluster-
ing since the NMF ignores the conditions that the rows of H are
orthonormal and each (k, n)th element is either zero or 1

Nk
. How-

ever, the condition of orthogonality and set discreteness are difficult
to deal with in general from an optimization point of view.

Therefore, the orthogonally constrained NMF (ONMF) model
proposed in [9] is a tradeoff between the NMF model and the exact
K-means clustering problem. Specifically, the ONMF problem is
given by

min
W,H

‖X−WH‖2F (4a)

s.t. W ≥ 0,H ≥ 0, (4b)

HHT = IK . (4c)

It is worthy noting that the orthogonality constraint, together with the
non-negativity constraint, enforces only one entry in each column of
H to be nonzero. The nonzero entry thereby explicitly indicates the
cluster index of the cell. As a result, an improved clustering per-
formance is expected when comparing to the classical NMF model
in (1). However, the orthogonality constraint (4c) makes the matrix
decomposition problem even more difficult to handle.

For the ONMF model in (4), reference [9] proposed an algorithm
by combining the multiplicative rule [16] and the penalty method.
This algorithm is also applied to clustering problems in biomedi-
cal applications such as cancer cell clustering and integrative data
analysis [15, 14]. Reference [18] proposed a splitting orthogonality

constraint (SOC) method that relies on variable splitting and ADMM
[19]. However, the SOC method neither considered non-negativity
constraints nor applications of cell subclass identification in scRNA-
Seq data. In the next subsection, we extend the idea of the SOC
method to handle the ONMF model in (4).

2.2. Proposed VS-ADMM Algorithm

The ONMF model in (4) is challenging to solve because both the
objective function and the orthogonality constraint are non-convex.
By the fact that either projection onto the non-negative set or projec-
tion onto the orthogonality constraint is simple and has closed-form
expression, we leverage the variable splitting technique and ADMM
[19] to solve problem (4) in an efficient manner. Specifically, let us
consider the following problem

min
W,H,S,P,Y

‖X−WH‖2F,

s.t. W = S,H = P,H = Y,

S ≥ 0,P ≥ 0,YYT = IK .

(5)

As seen, variables (S,P) are introduced for splitting the non-
negative constraint from W and H, respectively, and variable Y is
used to split the orthogonality constraint from H.

The second ingredient of the proposed method is ADMM. Ac-
cording to ADMM, we consider the (partial) augmented Lagrangian
function of (5), which is given by

La(W,H,S,P,Y,Λ) =
1

2
‖X−WH‖2F

+ Tr(ΛT
1 (W − S)) +

ρ1
2
‖W − S‖2F

+ Tr(ΛT
2 (H−P)) +

ρ2
2
‖H−P‖2F

+ Tr(ΛT
3 (H−Y)) +

ρ3
2
‖H−Y‖2F,

(6)

where Λ , (Λ1,Λ2,Λ3) in which Λ1 ∈ RM×K ,Λ2 ∈ RK×N

and Λ3 ∈ RK×N are Lagrangian dual variables associated with
linear equality constraints in (5), and ρ1, ρ2, ρ3 > 0 are the penalty
parameters for the augmented terms.

The ADMM iteratively minimizes the augumented Lagrangian
function (6) with respect to the primal variables (W,H,S,P,Y) in
a Gauss-Seidel fashion, followed by updating the dual variables us-
ing gradient ascent. Specifically, at each iteration r, we sequentially
perform the following updates

Wr+1 ← argmin
W
La(W,Hr,Sr,Pr,Yr,Λr), (7a)

Hr+1 ← argmin
H
La(W

r+1,H,Sr,Pr,Yr,Λr), (7b)

Sr+1 ← argmin
S≥0
La(W

r+1,Hr+1,S,Pr,Yr,Λr), (7c)

Pr+1 ← argmin
P≥0
La(W

r+1,Hr+1,Sr+1,P,Yr,Λr), (7d)

Yr+1←arg min
YYT=IK

La(W
r+1,Hr+1,Sr+1,Pr+1,Y,Λr), (7e)

Λr+1
1 ← Λr

1 + ρ1(W
r+1 − Sr+1), (7f)

Λr+1
2 ← Λr

2 + ρ2(H
r+1 −Pr+1), (7g)

Λr+1
3 ← Λr

3 + ρ3(H
r+1 −Yr+1). (7h)

Interestingly, thanks to the variable splitting, all the subproblems in
(7a) to (7e) admit simple closed-form solutions. Specifically, (7a)
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and (7e) are unconstrained least squares problems with respect to
W and H. They have solutions as

Wr+1 ← (X(Hr)T + ρ1S
r −Λr

1)[H
r(Hr)T + ρ1IK ]−1, (8)

Hr+1 ← (XTWr+1 + ρ2P
r −Λr

2 + ρ3Y
r −Λr

3)

× [(Wr+1)TWr+1 + (ρ2 + ρ3)IK ]−1. (9)

It can be shown that subproblems (7c) and (7d) are equivalent to
projecting Wr+1+ 1

ρ1
Λr

1 and Hr+1+ 1
ρ2

Λr
2 onto the non-negative

set, which respectively have solutions as

Sr+1 ← max(Wr+1 + Λr
1/ρ1, 0), (10)

Pr+1 ← max(Hr+1 + Λr
2/ρ2, 0), (11)

where max(·, 0) takes point-wise maximum value between the input
matrix and zero. Subproblem (7e) involves projecting Hr+1+ 1

ρ3
Λr

3

onto the set of orthogonal matrices YYT = IK . It is shown in [18]
that this problem has a closed-from solution

Yr+1 ← VUT . (12)

where V ∈ RK×K and U ∈ RN×K are the left and right singular
vector matrices of Hr+1 + 1

ρ3
Λr

3, i.e., Hr+1 + 1
ρ3

Λr
3 = VΣUT

for some diagonal singular value matrices Σ ∈ RK×K .
As seen from (7) to (12), the proposed VS-ADMM algorithm is

computationally efficient since each update has a close-form solu-
tion. In particular, the matrix inversion and singular value decom-
position (SVD) required in (8), (9) and (12) involves matrices with
dimension K and N which are much smaller than the number of
genes in scRNA-Seq data. Another key advantage of the proposed
VS-ADMM algorithm is that it allows a more flexible tradeoff be-
tween the feasibility of the orthogonality constraint and the low-rank
approximation accuracy. This is in contrast to the non-parameter al-
gorithm in [9] which does not allow such flexibility. Specifically,
since variable Yr satisfies the orthogonality constraint for all itera-
tions in the proposed algorithm, the feasibility of the orthogonality
constraint for variable Hr can be controlled by the proximity be-
tween Yr and Hr through a proper choice of the penalty parameter
ρ3. This flexibility is important for clustering tasks since satisfying
the orthogonality constraint better is usually more helpful for im-
proving the clustering performance than achieving a lower low-rank
approximation error, as we will demonstrate in Section 3.

2.3. Subclass Identification, Key Gene Extraction and Biologi-
cal Significance Analysis
The outcome of ONMF, i.e., H and W, can be further used for iden-
tifying subclasses of cells and finding key genes for each of the sub-
class. For subclass identification, while the low-dimensional matrix
H obtained by ONMF is theoretically a subclass indicator matrix,
one can improve the performance by further applying the K-means
to H. In particular, one may initialize the K-means with an initial
subclass association obtained by assigning each cell n to subclass
k̂ if k̂ = argmaxk=1,...,K |[H]k,n|, for all n = 1, . . . , N . The
number of subclasses K can be determined by the method of con-
sensus clustering used in [6]. The key genes associated with one
subclass should be these genes that are significant in their expres-
sion level only for cells in the subclass and weak for cells in other
subclasses. Since the columns of W correspond to the centroids of
the subclasses, the significance of each gene across subclasses can
be identified based on W. We adopt the scoring scheme in [7] which
computes an entropy-related score for each row of W. The genes are

Table 1. ScRNA-Seq datasets
Dataset Samples Genes Clusters

1 Mouse Embryonic Fibroblasts 405 12117 5
2 Bladder Cancer 121 23048 4

Table 2. Clustering Performance of Different Methods for Dataset 1
Purity Rand Index Sihouette

K-means 0.708 0.427 0.060
NMF (Euclidean) in [16] 0.731 0.483 0.538
NMF (KL) in [16] 0.742 0.489 0.616
DTPP in [9] 0.741 0.491 0.680
Proposed VS-ADMM 0.749 0.506 0.803

ranked according to the scores and those that are top ranked (e.g., the
first 1000 ranked genes) are selected as the key genes for subclasses.

To understand the biological meanings of the subclasses and key
genes, we further perform gene set enrichment analysis (GSEA) [20]
using Kyoto Encyclopedia of Genes and Genomes (KEGG) [21] and
REACTOME [22]. Both databases are widely used in biomedical
research dealing with genomes, biological pathways, diseases and
drugs.

3. NUMERICAL RESULTS AND DISCUSSIONS

3.1. Datasets
To demonstrate the effectiveness of the proposed VS-ADMM algo-
rithm, we consider two scRNA-Seq datasets as summarized in Table
1. Dataset 1 is publicly available from [23], and the data has clear
labels for 5 subclasses. Dataset 2 is provided by the Institute of Uro-
logical Surgery of Shenzhen University. The dataset does not have
prior subclass labels and is determined by the proposed algorithm as
stated in Section 2.3.

3.2. Algorithm Convergence Performance
Let us first examine the convergence behavior of the proposed VS-
ADMM algorithm and the comparison with the algorithm by Ding
et al. (DTPP) in [9]. In Fig. 1(a) and Fig. 1(b), we present the
normalized objective value with respect to the iteration number of
the two algorithms applied to Dataset 1 and Dataset 2, respectively.
In Fig. 1(c), we show the feasibility of the orthogonality constraint
(measured by ‖HHT − IK‖2F/K2) achieved by the two algorithms
when applied to the two datasets. The parameters in the experiment
are set to ρ1 = 1 × 10−4, ρ2 = 8.52 × 10−3, ρ3 = 1 × 10−1 for
Dataset 1 and ρ1 = 2× 10−3, ρ2 = 3.5× 103, ρ3 = 4.5× 104 for
Dataset 2. As one can see, for both datasets, while the proposed VS-
ADMM algorithm achieves comparable or slightly higher objective
values than the DTPP algorithm, the constraint feasibility achieved
by the proposed algorithm is consistently lower. This implies that
the proposed VS-ADMM gives better clustering performance, as we
demonstrate next.

3.3. Subclass Identification Performance
Since Dataset 1 has labeled information about subclasses, we can
examine the clustering performance of the proposed algorithm by
comparing the obtained results with the labels. In addition to the
proposed VS-ADMM and DTPP in [9], we also tested the K-means,
and the classical NMF method with a Euclidean distance and KL
divergence objective functions [16]. Three performance measures,
namely Purity [24], Rand Index [25] and Average Silhouette Width
[26], are evaluated by averaging over 10 trials each of which uses a
randomly generated initial point for the algorithms. The results are
displayed in Table 2. As seen, the proposed VS-ADMM algorithm
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Fig. 1. The convergence of objective value and feasibility of orthog-
onality constraint of DTPP in [9] and proposed VS-ADMM algo-
rithms applied to Datasets 1 and 2.

Table 3. Gene set enrichment analysis for key genes of Dataset 2
extracted by the proposed method.

Cluster Biological Pathway Genes FDR
q-value

1
(57 genes)

LIPID TRANSPORTER
ACTIVITY 3 1.89E-1

ENDOMEMBRANE
SYSTEM
ORGANIZATION

4 2.07E-1

CELLULAR LIPID
METABOLIC PROCESS 5 2.07E-1

2
(24 genes)

NEGATIVE
REGULATION
OF LIPASE ACTIVITY

2 3.03E-2

REGULATION OF
LIPASE ACTIVITY 2 4.87E-1

3
(58 genes)

HISTONE
DEMETHYLASE
ACTIVITY

2 1.27E-1

HISTONE BINDING 3 1.27E-1

4
(861 genes)

IMMUNE SYSTEM 33 1.85E-3
CELL CYCLE 19 3.46E-3
MISMATCH REPAIR 4 1.52E-2
PPAR SIGNALING
PATHWAY 6 1.90E-2

CELL CYCLE
CHECKPOINTS 8 1.90E-2

REGULATION OF
ACTIN CYTOSKELETON 10 3.99E-2

yields the best clustering performance over the other methods under
test.

For Dataset 2, we illustrate the performance of subclass identifi-
cation and key gene extraction by showing the heatmap of clustering
results (the distance matrix based on the Pearson coefficient of en-
tries of H) and expression level of the top ranked 1000 genes in
Fig. 2. Firstly, one can see from the heatmaps that, the proposed
VS-ADMM provides a satisfactory result with four well-separated
clusters, in contrast to the NMF and DTPP in [9]. Secondly, from
the gene expression levels, one can observe that the proposed VS-
ADMM gives a clear pattern for the key genes that are uniquely as-
sociated with each of the subclasses whereas the NMF and DTPP
don’t. Specifically, the 1000 key genes extracted by the VS-ADMM
include 57 genes for Cluster 1, 24 genes for Cluster 2, 58 genes for
Cluster 3 and 861 genes for Cluster 4.

3.4. Biological Significance Analysis of Extracted Key Genes
We validate the biological significance of the key genes of Dataset
2 by performing the gene set enrichment analysis (see Section 2.3).
Table 3 presents the corresponding biological pathways or processes

cluster 1 cluster 2 cluster 3 cluster 4

clu
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cluster 1 cluster 2 cluster 3 cluster 4

cluster 1cluster 2 cluster 3 cluster 4

clu
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clu

ste
r 2

clu
ste

r 3
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cluster 1cluster 2 cluster 3 cluster 4
clu
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r 1

clu
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r 2
clu
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r 3

clu
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r 4

cluster 1 cluster 2 cluster 3 cluster 4

cluster 1 cluster 2 cluster 3 cluster 4

Top ranked 1000 genes
Top ranked 1000 genes

Top ranked 1000 genes

(a) NMF

(b) DTPP

(c) VS-ADMM

Fig. 2. The heatmaps of clustering results (Left) and expression
level of the top ranked 1000 genes (Right) obtained by the NMF,
ONMF using DTPP and ONMF using proposed VS-ADMM applied
to Dataset 2.

for key genes of each cell subclass. Here, the analytical results are
usually recognized as significant if the false discovery rate (FDR) q-
value is less than 0.05 [27]. It is found that for Clusters 1, 2 and 3, the
corresponding biological processes are not only less significant due
to higher FDR q-values but also less relevant to cancer cells. In con-
trast, the key genes for Cluster 4 are enriched with pathways such as
immune system, PPAR (Peroxisome proliferator-activated receptor)
signal pathway, cell cycle and cytoskeleton, which are all important
and commonly identified in cancer cells. Cell cycle and immune sys-
tem pathways are usually found in cancer cells responsible for char-
acteristics of immortalization and immune evasion of tumor. PPAR
signal pathway related genes have already been found with high ex-
pression in muscle-invasive bladder cancer [28]. Also, changes in
cytoskeleton, also known as a process called epithelial-mesenchymal
transition, are essential for cancer cell invasion and metastasis [29].
These findings are consistent with the muscle-invasive features of
bladder cancer cells of Dataset 2. In summary, the above results well
demonstrate the heterogeneity of the dataset as well as the effective-
ness of the proposed method by VS-ADMM for finding biologically
significant cell subclasses and key genes for scRNA-Seq datasets.
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