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ABSTRACT

The ability to discriminate and classify different tasks is a crucial
requirement for any Electroencephalogram (EEG) based Brain com-
puter Interface (BCI). However, the intra and inter subject variability
in the brain signal patterns is a bottleneck for developing general BCI
systems and needs to be tackled. To address this issue, recently filter
banks are deployed to extract frequency specific features, which are
then fused at the classification step. On the other hand, some works
deploy optimization techniques to design (extract) subject-specific
filters (features). While both approaches have reached compromis-
ing results, there is still a huge gap between the performance of the
techniques and that of humans. In this regard, we propose a Bayesian
framework to simultaneously optimize a number of filter banks and
spatial filters according to the patterns of brain activity for each sub-
ject. Referred to as the Bayesian double band spectro-spatial filter
optimization (B2B-SSFO), the proposed method aims at combin-
ing the advantages of the two aforementioned approaches, and con-
sists of two bandpass filters providing frequency specific features
for each subject. The proposed framework is evaluated on dataset
2b from BCI Competition IV. The proposed B2B-SSFO approach
outperforms its counterparts and introduces a robust framework for
motor imagery studies.

Index Terms— Index Terms: Brain-computer Interface (BCI),
Common Spatial Patterns, Electroencephalogram (EEG), Motor
Imagery.

1. INTRODUCTION

Human brain is one of the most powerful signal processing units ever
known to us in the sense that it can analyze and fuse multiple num-
ber of streaming signals from different modalities in an adaptive and
real-time fashion. This outstanding ability has intrigued numerous
researchers to develop brain-computer interfaces (BCI) [1,2], which
allow the individuals to interact with outer world using their brain-
waves. The BCIs play an undeniable role in the human-in-the-loop,
cyber-physical systems [3, 4], which aim at further augmenting the
human’s interaction with the physical world. The BCIs are also a
key element in various other applications of significant importance
including assistive/rehabilitative systems [5–7], and controlling a
neuro-prosthesis for disabled individuals [8]. The plasticity proper-
ties of brain has enabled the BCI systems to be deployed in therapeu-
tic applications and has improved the effectiveness of the rehabilita-
tion [5, 9]. Rehabilitation-based BCIs nowadays are of paramount
importance in practical applications such as neuro-feedback (NFB),
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therapy for autism spectrum disorder (ASD), attention deficit hyper-
activity disorder (ADHD), schizophrenia, and motor rehabilitation
for post-stroke patients to name a few. However, the performance of
the aforementioned artificial systems rarely matches that of humans,
which means that the research in this area is still in its infancy and
numerous deficiencies need to be tackled.

A BCI system, typically, consists of different components, which
can be classified in to the following two main categories: (i) A
brain imaging modality such as Electroencephalogram (EEG), Near
Infra-red (NIR), Electrocorticogram (ECoG), or Magnetic Reso-
nance Imaging (MRI), which are used to record brain activities, and;
(ii) The signal processing module utilized to process and extract
meaningful information form the recordings. From the first category,
EEG is usually the prime choice for any practical BCI system, thanks
to its unique features including affordability, portability, and high
temporal resolution. Processing of EEG signals, on the other hand,
can be divided into two major steps, i.e., feature generation, and fea-
ture translation. The former is mainly about the pre-processing and
filtering of the EEG signals to extract informative features capable
of describing the intended underlying phenomena. The latter is about
deployment of the extracted features for classification and discrimi-
nation of different tasks.

In motor-related EEG studies, several modalities are investigated
in the literature which among them, the sensorimotor activities [10]
are known to be better representatives. Frontal and parietal cortices
of the brain, exhibit rhythmic activities in µ and β bands, which
locate in 8-12 Hz and 13-30 Hz, respectively. At the moment that
a voluntary movement is about to happen, a drop in the power of
these rhythms is observed, known as event related desynchronization
(ERD), and once the movement is done, these rhythms emerge again
and produce an event-related synchronization (ERS). Among differ-
ent processing techniques on sensorimotor activities, the common
spatial patterns (CSP) [11, 12] technique is known to be an effective
tool for classifying the motor imagery (MI) tasks. The CSP provides
spatial filters resulting in more precise detection of the ERD and the
ERS waveforms. Consequently, the CSP focuses more on the chan-
nels which demonstrate higher weights of the ERD and ERS wave-
forms. The superior power of the CSP approach in discriminating
MI tasks has motivated the researchers to further extend the method
to enhance its classification performance. A number of these ex-
tensions include filter bank common spatial patterns (FBCSP) [13],
regularized common spatial patterns (RCSP) [14–16], and separable
common spatio-spectral patterns (SCSSP) [17]. The work in [13]
showed that the performance of the CSP method drastically im-
proves while the EEG signals are separated into different frequency
bands and each frequency band is analyzed separately. This initiated
several contributions in this regard, where at one hand, likewise the
FBCSP [13], a number of frequency bands with deterministic limits
are considered [17]. On the other hand, an optimization problem is
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defined to optimize one frequency band limit [18].
The methods deploying filterbanks are shown to be successful for

MI classification, however, in such methods a large portion of the
processing is wasted and does not provide discriminative features.
On the other hand and to best of our knowledge, the methods which
are based on optimizing the spectral filters inspect one frequency
band and try to optimize its limits. The paper addresses this gap.
In particular, we propose a framework to combine the two methods
in an intuitive fashion such that the advantages of the filter bank
approach align with those of the optimized techniques. In this re-
gard, we propose a Bayesian framework to optimize the limits of
two bandpass filters. This filterbank is served as the spectral filtering
step of the method and is followed by CSP-based spatial filtering.
Referred to as the Bayesian double band spectro-spatial filter opti-
mization (B2B-SSFO), in the proposed framework, the uncertainty
of the frequency band limits is modeled by random variables, which
are optimized over several iterations by measuring the information
between the extracted features and the class labels. In summary, the
paper makes the following key contributions:

1. The paper integrates the idea of utilizing filter banks to extract
more informative features with that of deriving one subject-
specific and optimized spectral filter to analyze the MI signals.

2. In this work, we are optimizing a number of filter banks at
the same time while the characteristics of the filter bank are
inter-dependent. The proposed solution is superior to existing
algorithms that optimize a number of filters separately.

The proposed B2B-SSFO is evaluated for accuracy and compared
with different state-of-the-art techniques based of Dataset 2b from
BCI Competition IV. It is shown that the proposed B2B-SSFO
framework significantly outperforms its state-of-the-art counter-
parts. The rest of the paper is organized as follows: Section 2 for-
mulates the problem. The proposed B2B-SSFO is developed in Sec-
tion 3. Simulation results are provided in Section 4. Finally Section 5
concludes the paper.

2. PROBLEM FORMULATION

Throughout the paper, the following notation are used: non-bold let-
ter x denotes a scalar variable; lowercase bold letter x represents a
vector, and ;capital bold letterX denotes a matrix. The real domain
is represented by R. The transpose and trace of a matrix X are, re-
spectively, denoted byXT , and Tr(X).

We consider supervised learning from EEG signals based on the
available set of EEG epochs (trials) denoted by

Xi ∈ RNch×Nt , (1)

for (1 ≤ i ≤ NTrial), whereNTrial is the total number of trials used for
processing;Nch is the number of EEG channels (electrodes), and;Nt

is the number of time samples collected from each electrode in one
trial. The training dataset is denoted by {(Xi,Ωi)}, for (1 ≤ i ≤
NTrial), where Ωi represents the label corresponding to the ith trial,
e.g., Ωi could be “MI of right hand” or “MI of left hand”. Before
processing EEG for classifying MI tasks, typically, a pre-processing
step is applied. In this stage, initially the power line interference is
removed by applying a notch filter, then, desired frequency contents
of the signal are extracted by means of a bandpass filter.

Once the aforementioned pre-processing step is complete, the
proposed B2B-SSFO framework is implemented based on the train-
ing trials to obtain the optimized spectral filters for each subject.
The spectral filters are optimized to achieve the maximum classifi-
cation accuracy for the MI tasks. The optimization problem defines

a conditional probability between the characteristics of the spectral
filters and the class labels and tries to maximize the probability by
adjusting the characteristics of the spectral filters. To extract infor-
mative features from the spectrally filtered signals, the CSP tech-
nique [12] is then deployed. Intuitively speaking, the CSP performs
dimension reduction on the data as well as providing discriminant
features from the classes of data. The reason that CSP outperforms
some well regarded analytical techniques (e.g., principal component
analysis (PCA) and independent component analysis (ICA)) for di-
mension reduction and feature extraction is that the CSP uses the
labels of the data and handles the problem in a supervised fashion.
This completes a brief presentation of the problem at hand. Next, we
present the proposed B2B-SSFO framework in details.

3. THE B2B-SSFO FRAMEWORK

In this section, we present the proposed B2B-SSFO framework,
which is designed for discriminating two classes of MI tasks by
means of optimizing the spatio-spectral filters to extract the most
discriminant features. We model the uncertainty in the cut-off fre-
quencies of the spectral filters with a prior probability denoted by
p(B) over random variable B. Unlike the work in [18], which de-
fines B = [bs, be] as the cutoff frequencies of a bandpass filter, we
define B as follows

B , [bs, bm, be], (2)

where [bs, bm] defines one bandpass filter, which ideally aims at ex-
tracting the µ band contents, and [bm, be] defines another bandpass
filter to extract information from the β band. However, the cutoff fre-
quencies are random variables and are optimized in an iterative fash-
ion to increase the classification accuracy. The prior density p(B)
describes relative probabilities of different states (frequency bands)
in which a single-trial EEG recording is correctly discriminated. The
posterior probability distribution denoted by p(B|Xi,Ωi) is then
computed based on a single-trial EEG recording Xi, for (1 ≤ i ≤
NTrial), and its corresponding label denoted by Ωi, as follows

p(B|Xi,Ωi) =
p(Xi,Ωi|B)p(B)

p(Xi,Ωi)
. (3)

However, the term p(Xi,Ωi|B) on the right hand side (RHS) of
Eq. (3) is too complex in nature resulting in complex p(B|Xi,Ωi),
which eliminates the possibility of direct evaluation in closed-
form. Alternatively, particle-based approximation techniques [19,
20] are utilized to address this issue. In brief, a set of Np par-
ticles {B(k)}Np

k=1 generated from the prior density p(B) are uti-
lized, where B(k) denotes a particle representing a single filter
bank. To be more specific, each particle contains the weight of it-
self (π(k)) and the characteristics of the filter bank that it defines
(B(k) = {bs(k), bm(k), be(k), π(k)}).

We model the bandpass filtering of the EEG recordings as convo-
lution of the input signals with system h(l)(k), for (l ∈ {1, 2}), as-
sociated with each of the two bandpass filters. Therefore, the filtered
signal, denoted by Z(l), is deterministically obtained as follows

Z(l)
i (k) = h(l)(k) ~Xi, (4)

where ~ denotes the convolution operation. The likelihood and the
evidence are , therefore, become equal to p(Z(l)

i (k),Ωi|B(k)) and
p(Z(l)

i (k),Ωi), respectively. Hence, we can rewrite (3) by replacing
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the raw EEG signalXi with its bandpass-filtered version Z(l)
i (k) as

p(B(k)|Z(l)
i (k),Ωi) =

p(Z(l)
i (k),Ωi|B(k))p(B(k))

p(Z(l)
i (k),Ωi)

. (5)

The posterior p(B(k)|Z(l)
i (k),Ωi) provides all the required infor-

mation regarding B(k) which can be obtained from the bandpass-
filtered signal Z(l)

i (k) and its corresponding class label Ωi. The
spectral filtering step is then followed by computing the common
spatial patterns of each trial for each frequency band in each particle
(i.e., Z(l)

i (k)). In this regard, we first compute the spatial covariance
of the trials. Please note that the spatial filter calculation is performed
for the signals in each iteration (k) and in each frequency band (l).
To simplify the presentation, in the following formulations we have
omitted index (k) from the particles.

Since Z(l)
i is obtained from bandpass filtering of an EEG signal,

all classes have zero mean, therefore, the normalized spatial covari-
ance matrix is given by

C
(l)
i =

Z(l)
i Z(l)

i

T

Tr(Z(l)
i Z(l)

i

T
)
. (6)

As the goal of the CSP approach is to discriminate two classes
of data (i.e., 0 and 1), we define C̄(l)

0 and C̄(l)
1 as the aver-

age of spatial covariance matrices of different trials. Based on the
computed average covariance matrices (C̄(l)

0 and C̄(l)
1), the com-

posite spatial covariance matrix denoted by C(l) is computed as
C(l) = C̄(l)

0+C̄(l)
1. Next, eigenvalue decomposition is performed

as C(l) = U (l)λ(l)[U (l)]T , where U (l) is the matrix of eigenvec-
tors associated with the composite covariance, and λ(l) is the di-
agonal matrix of its corresponding eigenvalues. In the next step, a
whitening transform is applied on U (l) as

P (l) =

√[
λ(l)

]−1
[U (l)]T . (7)

Intuitively speaking, the whitening operator equalizes the vari-
ance in the space spanned by U (l), i.e., all the eigenvalues of
P (l)C(l)[P (l)]T are equal to one. Using the whitening matrix, the
average covariance matrices (C̄(l)

0 and C̄(l)
1) are transformed as

S
(l)
1 = P (l)C̄(l)

1[P (l)]T and S(l)
0 = P (l)C̄(l)

0[P (l)]T , there-
fore, S(l)

0 and S(l)
1 share common eigenvectors denoted by B(l),

i.e., S(l)
0 = B(l)λ

(l)
0 [B(l)]T and S(l)

1 = B(l)λ
(l)
1 [B(l)]T , with

λ
(l)
0 + λ

(l)
1 = I , where I denotes an identity matrix of appropriate

dimension.
The B2B-SSFO projection matrix corresponding to each band-

pass filter is then given by W (l) = [P (l)]TB(l), which is used to
form the decomposition (mapping) of each trial Z(l)

i , for (1 ≤ i ≤
Nt), as follows

W(l)
i =

[
W (l)]TZ(l)

i . (8)

As the variances of only a small number (m) of signals are suitable
for discrimination analysis, only the first and last m rows of W(l)

i

are used for feature extraction. The corresponding features for the
trials in each frequency band are extracted as

f
(l)
i = log

(
var
(
W(l)

i

)∑
var
(
W(l)

i

)), (9)

where var(·) denotes the variance operator. Note that, the log-
transformation in Eq. (9) is included to magnify the distance between

the features. After calculating the frequency specific features based
on different spatial filters, we concatenate the features and form a
single feature vector for each trial; hence, the feature vector of each
trial is given by

fi =
[
[f

(l)
i |l=0]T , [f

(l)
i |l=1]T

]T
. (10)

A set of feature vectors (F (k)) is then formed based on the features
extracted from each particle as

F (k) = {f(k)i}NTrial
i=1 ∈ R2m×NTrial . (11)

This matrix F incorporates all the features of the training trials into
the posterior probability estimation of Eq. (3). In addition, we form
vector Ω= {Ωi}Ntr

i=1 which puts together all the trial labels for the
training dataset. The goal to find the optimal spatio-spectral filters
for discriminative feature extraction, therefore, can be defined as es-
timation of the posterior distribution given by

p(B(k)|Z(l)
i (k),Ωi) , p(B(k)|F (k),Ω)

=
p(F (k),Ω|B)p(B(k))

p(F (k),Ω)
. (12)

Once the posterior probabilities are estimated, the weights of the par-
ticles need to be derived. The weight of each particle is computed as

π(k) =
p(F (k),Ω|Bk)∑Np

k=1 p(F (k),Ω|B(k))
. (13)

Please refer to [19, 20], for further details on particle filtering. For
each iteration of the optimization procedure, the set of particle
weights are calculated according to Eq. (13). Then, the following
condition is applied on the particles to evaluate the weight

Π =
⋃
k

(π(k) > τ). (14)

It is worth mentioning that τ in Eq. (14) is a random number be-
tween 0 and 1, and in each iteration its value changes. If a particle is
selected and is included in the set Π, its associated characteristics of
the filter bank remain intact for the next iteration. However, for those
particles which are not included in this set, a disturbance following
a normal distribution (∼ N (0, 1)) is added to the values of the band
limits, which define the characteristics of the filter banks. In the next
iteration, the effect of the disturbance (changing the characteristics
of the filter banks) is evaluated and the same procedure goes on for
a specific number of iterations until the particles converge to the op-
timum value of the band limits for the spectral filter and the particle
weights.

In the final step, after deriving the optimized particles,Np number
of support vector machines (SVMs) classifiers are trained based on
the features extracted from each particle. In the evaluation phase, the
score of each classifier for an unseen trial is multiplied by its corre-
sponding particle weight. The result of the summation over all of the
weighted scores is considered as the final decision of the proposed
B2B-SSFO framework. Algorithm 1 outlines the training phase of
the proposed B2B-SSFO framework. This completes the develop-
ment of the proposed B2B-SSFO.

4. SIMULATION RESULTS
The proposed B2B-SSFO method is evaluated on the dataset from
BCI Competition IV2b [21] which demonstrates the EEG recordings
from 9 different subjects. The subjects are all right-handed and had
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Algorithm 1 The B2B-SSFO Framework in the Training Phase

Input: EEG recordings {Xi}NTrial
i=1 and their corresponding labels

{Ωi}NTrial
i=1

Output: The optimized particles {B(k)}Np

k=1 and Np number of
trained classifiers.

S1. Define Np number of particles which ∀k : π(k) = 1
Np

.
S2. Initialize the filter bank band limits with a random value.
S3.

1: for The number of iterations do
2: for k ∈ the number of particles do
3: Spectrally filter the signals by Eq. (4)
4: Derive the CSP filters for each frequency band (W (l))
5: Spatially filter the signals by Eq. (8)
6: Extract features by Eqs. (9) and (10)
7: end for
8: Form the features matrix F by Eq. (11)
9: Compute the posterior probability for Eq. (12)

10: Calculate the particle weights using Eq. (13)
11: if π(k) < τ then
12: Add normal noise to [bs, bm, be] in particle k.
13: end if
14: end for
S4. TrainNp number of SVM classifiers based on the featuresF (k)

from the last iteration.

normal or corrected-to-normal vision. In this dataset, the subjects
were asked to perform two motor imagery tasks including “left hand
MI” and “right hand MI”. From each subject 5 sessions are recorded,
3 of them for training and the rest for evaluation. Among the train-
ing sessions, 2 of them are recorded without providing feedback to
the subject and one is recorded when the feedback is enabled. This
dataset provides 6 channels of recording, 3 for EEG and 3 for EOG.
The EEG channels are recorded form C3, Cz, and C4 points in the
10-20 EEG recording system. It is worth mentioning that we did not
take the EOG recordings into account. The signals are recorded with
sampling frequency of 250 Hz and bandpass filtered between 0.5-
100 Hz. A notch filter to remove the 50 Hz effect of power line on
the recordings is also applied.

We performed several experiments on the same subject while
changing the parameters of B2B-SSFO, such as the number of parti-
cles and the number of iteration. According to our results, we noticed
that 30 number of particles and 30 iterations yield almost the best
result. It is worth mentioning that here, there is a compromise be-
tween selecting higher number of particles and iterations and the run
time of the algorithm. In the first iteration, the particles are weighted
equally (1/Np); hence, the initial value for the particle weights is set
to 1/30 and the band limits of the spectral filters are initialized with
random numbers in the range of 4-40 Hz. We have selected the upper
band limit equal to 40 Hz, since numerous studies suggest that infor-
mative contents of the EEG signals occur in the frequencies less than
40Hz. As it is suggested by the BCI competition, the performance
for this dataset should be measured in Kappa value. The formulation
for the Kappa value is given by

κ =
CCR− Prand

1− Prand
, (15)

where CCR denotes the Correct Classification Rate and Prand is the
probability of random classification, which in this experiment is 0.5.
In addition, after spatial filtering of the signals, the first and last row
(m = 1) of the signals are used for feature extraction.

Table 1. Performance comparison for different approaches, tested on
BCIC − IV2b dataset. Performance measure is in Kappa (κ) value.

Subjects CSP BSSFO FBCSP B2B-SSFO
Subject 1 15 18.63±4.82 21.25 23.13±3.34
Subject 2 1.43 13.79±3.64 15.71 15±3.87
Subject 3 23.75 7.19±3.12 -4.38 5.62±3.02
Subject 4 36.88 93.63±0.92 61.25 95.63±2.11
Subject 5 23.75 15.63±2.64 55 57.5±6.43
Subject 6 -5.63 49.4±11.62 23.13 55.63±3.94
Subject 7 44.38 52.06±2.17 30.63 45.63±2.83
Subject 8 74.38 77.94±1.06 17.5 79.38±3.19
Subject 9 30.63 59.94±2.19 13.13 64.38±3.32
Average 27.17 43.15 25.91 49.1

In order to evaluate the performance of the proposed B2B-SSFO
framework, we have compared the results of our algorithm with
the ones from conventional CSP [12], the BSSFO [18], and the
FBCSP [21]. Please note that to maintain the fidelity of the com-
parison, we have not performed the feature selection procedure
which is discussed in the original FBCSP method, and we also have
trained a linear SVM classifier, particularly for each of the methods.
Moreover, the spectral filter that we deployed in this study for the
B2B-SSFO, FBCSP and BSSFO is a 5th−order Butterworth IIR fil-
ter. Furthermore, for the implementation of the FBCSP and to eval-
uate all the methods in rather similar conditions, we used SVM clas-
sifier instead of Naive Bayes Parzen window Classifier and removed
the feature selection procedure. Moreover, the spectral filter which
is used is Butterworth instead of Chebychev type2.

The results of our experiment and comparison with other method
are presented in Table 1. Please note that the values in this table are
the kappa values multiplied by 100. As it is observed form the re-
sults, the proposed B2B-SSFO framework outperforms its counter-
parts in terms of accuracy. However, it is worth mentioning that the
higher accuracy and optimality comes at the cost of higher computa-
tions in the training phase, where the algorithm tries to find the opti-
mum characteristics for the spectral filters and also optimum weights
for the particles. It is worth noting that as an example, the means
of the optimized frequency bands for the 1st subject are 7.75Hz,
15.89Hz and 31.27Hz, respectively, for bs, bm and be. Once the
training phase is complete and the problem is optimized, the results
can be used in the evaluation phase while keeping the execution time
rather similar in comparison to other methods. It is worth mention-
ing that the extension of B2B-SSFO for multi-class problems, where
the number of MI tasks is more than 2, could be satisfied by some
techniques such as One vs. One (OVO), One vs. All (OVA) [13] or
Error Correction Output Coding (ECOC) classifiers [22], which is
the focus of our ongoing research.

5. CONCLUSION
In this paper, we proposed the Bayesian double band spectro-spatial
filter optimization (B2B-SSFO) framework to leverage the perfor-
mance of the feature extraction stage by means of an optimization
step utilized to optimize the spatio-spectral filters. More specifically,
we deployed a Bayesian framework to optimize the spatio-spectral
filters based on a CSP feature extraction scheme which results in the
most discriminative features for motor imagery tasks. The proposed
framework is evaluated on dataset 2b from BCI Competition IV and
the results are compared with other well known techniques in motor
imagery BCIs. The results indicate that the B2B-SSFO provides a
significant performance improvement in comparison to its state-of-
the-are counterparts.
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