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ABSTRACT

ECG is corrupted by various noises and denoising of ECG
is central to proper diagnosis of cardiac diseases. The main
objective of this work is to exploit the efficacy of non-local
means (NLM) for ECG denoising. In the presented work,
noisy ECG signal is decomposed into variational mode func-
tions (VMFs) using variational mode decomposition (VMD)
technique. The decomposed VMFs represents the different
frequency band of the noisy ECG signal. The non-local sim-
ilarity present in each VMFs were exploited using NLM es-
timation for effective ECG denoising. The two-stage VMD
decomposition and NLM estimation process is performed on
different set of VMFs at both stages. The proposed method
is tested upon MIT-BIH Arrhythmia database. The denois-
ing performance of existing techniques is compared to pro-
posed method. The computed results shows that the proposed
method gives superior denoising performance.

Index Terms— Electrocardiogram, denoising, variational
mode decomposition, variational mode function, Non-local
means

1. INTRODUCTION

Electrocardiogram (ECG) signal represents the electrical pic-
ture of human heart. It consists of important clinical pa-
rameters and aids in diagnosis of cardiac diseases [1]. The
primary problem associated with ECG recording process is
noise contamination. During ECG acquisition process, vari-
ous noises such as baseline wander (BLW), power-line inter-
ference (PLN), motion artifacts (MA), disturbance in record-
ing device, etc affects ECG signal [1, 2]. During ambulatory
ECG recording white Gaussian noise (WGN) abducts ECG
signal [3]. Denoising becomes key for any further signal pro-
cessing on ECG signal. These noises affects different fre-
quency band of original ECG signal. BLW noise corrupts
the lower frequency band, PLI adds 50/60 Hz line frequency
where as MA, device noises, WGN and other burst noises af-
fects the entire frequency range of the ECG signal.

Many ECG denoising techniques can be found in litera-
ture [4, 5, 6, 7, 8, 9, 10, 11, 12]. In [13, 12, 5], PLN and BLW

affected signal were denoised using empirical mode decom-
position (EMD) and discrete wavelet transform (DWT) meth-
ods. In [14, 7], denoising of ECG signals affected by MA is
performed by wavelet based method. In [4, 6, 9, 10, 3], WGN
noise based denoising frameworks were proposed. In [8],
nonlinear Bayesian filtering framework is proposed.

Most of the these methods are based on EMD-domain
thresholding [5, 9, 13] and wavelet domain filtering [7, 15,
11]. In [4], patch-based non-local means (NLM) technique
applied on raw noisy ECG for its denoising is proposed. It’s
performance is quite competitive with existing state-of-art
methods in terms of distortion and mean-square error mea-
surement of denoised output. The major challenge with NLM
method is the “rare-patch”effect [4]. The abrupt amplitude
and frequency variation around QRS-complex region leads to
rare-patch effect, resulting in ineffective QRS-region denois-
ing.

Recently, variational mode decomposition (VMD) [16]
has been proposed to decompose the signal into predefined
number of narrow-band variational mode functions (VMFs).
Each VMFs represents smaller portion of the overall fre-
quency band of the signal. Unlike ECG, these VMFs does
not have abrupt amplitude or frequency variation, thus suit-
able for NLM technique. Motivated by this, a novel two-
stage VMD-NLM framework for is proposed effective ECG
denoising. The set of VMFs in desired frequency-band are
computed from noisy ECG signal for both stages and NLM
estimation is performed on selective VMFs. The effective
implementation of NLM in VMF denoising results in over-
coming the “rare-patch”effect in NLM technique. The simu-
lations are performed on MIT-BIH Arrhythmia database [17].
The proposed method outperforms the existing approaches
based on the qualitative and qualitative approaches.

The rest of paper is organized as follow: Section 2 de-
scribes the Proposed ECG denoising methodology. Section 3
presents the experimental results and a discussion on the
same. Finally, the paper is concluded in Section 4.

2. PROPOSED METHODOLOGY

The overall proposed ECG denoising process is depicted in
Figure 1. Firstly, the noisy ECG signal is decomposed into
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Fig. 1. Proposed method for ECG denoising. Stage-1 and
stage-2 processes are marked by vertical arrow.

m number of narrow-band VMFs (represented as vmf1
m) at

stage-1. These VMFs are arranged from low-frequency to
high-frequency band region of the ECG signal. The low-
frequency band VMFs (i.e from vmf1

1 to vmf1
j ) are first

processed using NLM-estimation. The rest of stage-1 high-
frequency VMFs (vmf1

j+1 to vmd1
m) are summed together

and further decomposed into n VMFs at stage-2. The value
of n is kept greater thanm to get the fine information residing
in high-frequency ECG signal for effective denoising. The
selection of VMFs subjected to NLM estimation at both stage
is explained in section 2.3. The first i − 1 VMFs (vmf2

1 to
vmf2

i−1) in stage-2 having non-local similarity and contain-
ing fine clinical information are then estimated by NLM tech-
nique. The rest of very-high frequency VMFs (vhf − vmfs)
from vmf2

i to vmf2
n are mostly high frequency noises. The

vhf − vmfs contains very little significant information as
they mostly lie outside the typical ECG signal frequency
range. The denoised output is achieved by summing the
stage-1 and stage-2 NLM estimated VMFs. The VMD de-
composition process, NLM estimation technique, and VMFs
selection- and denoising-processes are explained as follows:

2.1. Variational Mode Decomposition

Variational mode decomposition (VMD) is a non-recursive,
concurrent, signal decomposition method [16]. It looks for
the ensemble of modes and their center frequency. The de-
composed variational mode function (VMFs) represents the
narrow-band frequency region of the input signal. For a given
input signal, VMD computes predefined number of varia-
tional mode functions, vk, and their corresponding central
frequency, fk. The mode central frequency (fk) are sparsity
priors and helps in reproduction of input signal. To com-
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Fig. 2. Stage 1 variational mode functions (VMFs). The
modes are arranged from low- to high-frequency band.

pute vk and fk, the constrained variational problem is solved
which is given as:

min
{vk},{fk}

{∑
k

∥∥∥∂t[(δ(t) +
j

πt

)
∗ vk(t)

]
e−jfkt

∥∥∥2

2

}
(1)

such that
∑
k vk = x. k is total number of decomposed

modes. The reconstruction constraint is solved with help of
Lagrangian multipliers, λ(t) and quadratic penalty term. The
resultant VMFs computed in frequency domain, v̂k, is as fol-
lows:

v̂n+1
k (ω) =

x̂(ω)−
∑
i6=k v̂i(ω) + λ̂(ω)

2

1 + 2α(ω − ωk)2
(2)

The inverse Fourier transform is used to calculate the corre-
sponding time domain VMFs, vk. Figure 2 and 3 represents
the decomposed VMFs and their corresponding magnitude
spectrum for a noisy ECG signal at k = 5. The detailed dis-
cussion on working of VMD is given in [16].

2.2. NLM estimation process

The NLM technique finds the non-local similarity present in
the noisy input signal y for denoising purpose [4]. It is a patch
based technique (patch represents group of sample points in
the signal) which compares two patches to find non-local sim-
ilarity. For a given sample p, the denoised estimation x̂(p)
is weighted sum of sample values at another point q in the
search-neighborhood Z(p)

x̂(p) =
1

Y (p)

∑
qεZ(p)

w(p, q)y(q) (3)

where Y (p) =
∑
q w(p, q). The weight value (w(p, q)) is

computed by weighted squared-difference of patches centered
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Fig. 3. Magnitude Spectrum of stage 1 VMFs. They are arranged from low- to high-frequency band region (left to right.
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Fig. 4. Stage 2 variational mode functions (VMFs). The
modes are arranged from low- to high-frequency band (top
to bottom).

at p and q, respectively. It is mathematically represented as:

w(p, q) = exp

−
∑

∆εδ

(
y(p+ ∆)− y(q + ∆)

)2

2Lδτ2

 (4)

where τ is bandwidth parameter, δ represents the patch of
samples with Lδ sample points. The NLM novelty is that the
weight’s depends on similarity between patches and not on
physical distance between patches.

2.3. VMFs selection, denoising and signal reconstruction

The selection of VMFs at two-stages in the proposed meth-
ods is done based on the efficacy of NLM estimation. As
pointed out in section 1 that, the NLM denoising technique
works effectively by finding the non-local similarity but
suffers from the rare-patch problem. The resulting rare-
patch effect is due to the fact that, the ECG signal contains

abrupt amplitude and frequency variation around the QRS-
complex region. This effect results in ineffective denoising
of QRS-region. On other hand if properly decomposed, the
VMFs can have lesser amplitude and frequency variation
as suitable for NLM . Also to compliment NLM efficacy,
these VMFs have non-local similarity. Keeping in mind the
fact that the very large and small VMD decomposition lev-
els results in under-binning (loss of ECG information) or
over-binning (mode duplication) of modes [16], a 5 mode
decomposition is performed at stage-1. The stage-1 VMFs
(vmf1

m = (vmf1
1 , vmf

1
2 .....vmf

1
5 )) and its magnitude spec-

trum ( ms1
m = ms1

2,ms
1
2...ms

1
5) are shown in Figure 2 and 3

respectively. It can be observed that, the initial two modes
(vmf1

1 and vmf1
2 ) contains lesser amplitude-frequency vari-

ation and significant non-local similarity, thus ideal for NLM
estimation. The remaining VMFs (vmf1

3 to vmf1
5 ) lie in the

high-frequency range and have abrupt amplitude variation.
But they contain some significant ECG information and needs
further inspection. To do so, these remaining stage-1 VMFs
are summed together and subjected further to 7-mode VMD
decomposition at stage-2. These VMFs are represented as
vmf2

n = (vmf2
1 , vmf

2
2 , ....vmf

2
7 ) as shown in Figure 4. The

initial 3 VMFs (vmf2
1 to vmd2

3) are subjected to NLM esti-
mation as they contain some significant high-frequency-ECG
information. The remaining stage-2 VMFs mostly contains
high-frequency noises are discarded. The final reconstruction
is done by adding the processed VMFs at both stages.

3. EXPERIMENTAL EVALUATION

3.1. Experimental setup

The experimental evaluation is performed on MIT-BIH Ar-
rhythmia database [17]. The records in database are sampled
at 360 Hz and at 11 bits resolution. Each record contains
2 leads ECG data, MLII lead and V5 lead. This work uses
MLII lead and the record used for comparison are kept similar
to ones used in existing discussed techniques [4]. This work
uses 10 second raw ECG (3600 samples) data for all simu-
lation purpose. To simulate various noises, white Gaussian
noise (WGN) is added to raw signal at different input signal-
to-noise ratio (SNR). Also random noise at standard devia-
tion of 0.20 is added to simulate Motion artifact (MA). The
performance metrics used for all quantitative result compari-
son are kept similar to the ones used in [4]: signal-to-noise ra-
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Fig. 5. Denoised EGC signal obtained for: (A) WGN noise
and (B) motion artifact (MA). (a) Raw ECG, (b) Noisy ECG,
(c) DWT-thresholding (d) NLM method, (e) Proposed method

tio improvement (SNRimp), mean-square error (MSE) and
percent-root distortion. These metrics informs about various
aspect of denoised signal compared to the raw and noisy ECG
signals. The critical NLM parameters are set as: patch size
= 12 samples, search-neighborhood size = 50 samples and
bandwidth parameter is τ = 0.75σ. where σ being the noise
standard deviation. The VMD stage-1 decomposition level is
set at m = 5 and that for stage-2 is n = 7.

3.2. Results and Discussion

To establish the efficacy of proposed approach, it has been
compared with existing DWT-thresholding [15] and NLM-
estimation [4] techniques. Figure 5 shows the qualitative
comparison of the proposed method with existing methods
for both WGN and MA noises. The morphological struc-
ture is effectively retained by proposed method compared to
existing one for both noises.

The quantitative comparison results are shown through
Figure 6 and Table 1. The results are compared based on per-
formance metrics discussed in subsection 3.1. In Figure 6(a)
and (b), the SNRimp for discussed methods are compared
for different set of input SNR and test signals respectively.
Similar comparison is made based on PRD values in Fig-
ure 6 (c) and (d). The MSE values for the compared methods
are shown in Table 1 for various test signals. The resultant
SNRimp value for proposed method is significantly higher
than the existing methods. Also the MSE and PRD values are
lower for the proposed work as desired.

These results shows that the proposed denoising method
performs better compared to discussed methods both quali-
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Fig. 6. Comparison of SNR improvement and PRD with vary-
ing SNR levels for different explored denoising methods.

Table 1. The MSE values for the explored approaches with
respect to all test signals at 5 dB input SNR value.

ECG Signal DWT-thresholding NLM Proposed

100 0.0029 0.0013 0.0009

103 0.0081 0.0041 0.0020

104 0.0074 0.0045 0.0025

105 0.0073 0.0047 0.0027

106 0.0132 0.0068 0.0030

115 0.0080 0.0041 0.0024

215 0.0047 0.0027 0.0023

tatively and quantitatively. The NLM ill-effect of rare-patch
effect has been effectively overcame in this work. It is to
note that, NLM algorithm will work efficiently if applied
on narrow-band signals with lesser amplitude variation com-
pared to raw ECG with abrupt amplitude variation around
QRS-complex region.

4. CONCLUSION

In this paper, a two-stage VMD-NLM based ECG denoising
techniques has been proposed. The noisy ECG is decomposed
into VMFs with exclusive decomposition capability of VMD.
The resultant narrow-band VMFs selected at both stages are
efficiently processed through NLM technique for effective de-
noising. The proposed work overcomes the rare-patch ef-
fect of NLM technique by proper VMFs selection. The pro-
posed method works effectively on both white Gaussian noise
(WGN) and motion artifact (MA), and retains the significant
morphological information of ECG. In Future, efforts will be
made to incorporate denoising of power-line interference and
baseline wander. The results are found to be superior com-
pared to the existing method both qualitatively and quantita-
tively .
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