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ABSTRACT

This paper proposes a patient-specific supervised classifica-
tion algorithm to detect seizures in long offline intracranial
electroencephalographic (iEEG) recordings. The main idea
of the proposed algorithm is to combine a set of probabilistic
classifiers, trained on a dataset of 1 s epochs, into a weighted
ensemble classifier which can be used to analyze longer 5 s
data segments. The method is trained and evaluated on 24 pa-
tients, all suffering from focal medically intractable epilepsy,
from the Epilepsiae database. The evaluation of the method,
conducted using an average of 113 hours (min: 32 h, max:
229 h) of iEEG data per patient, shows that the proposed al-
gorithm improves upon existing methods for seizure detection
with iEEG.

Index Terms— Seizure detection, intracranial EEG, su-
pervised learning

1. INTRODUCTION

Affecting approximately 1% of the world’s population,
epilepsy is a chronic neurological disorder whose visible
symptoms are recurrent seizures, a physical reaction to an
excessive electrical discharge in the brain. Despite new treat-
ments, in approximately 40% of the cases, epilepsy cannot
be efficiently treated by medication. For these patients, re-
sective surgery may be proposed as an alternative. It consists
of an invasive treatment which aims at removing the seizure
onset zone, the part of the brain responsible for the seizures.
Prior to surgery, the localization of the epileptogenic zone
is usually done using intracranial electroencephalography
(iEEG) recordings from subdural strip, grid or depth elec-
trodes. Several hours (or days) of EEG monitoring are often
necessary. Later, the visual inspection of the (i)EEG records
is a time-consuming and complex task during which a trained
expert annotates the data by distinguishing between ictal and
non-ictal brain activity.

Methods and algorithms for the automatic detection of
epileptic seizures are usually designed for scalp EEG or
iEEG. Scalp EEG offers two advantages: it is not invasive
and the position of the electrodes on the scalp is usually

comparable across individuals. For patients with pharma-
coresistant epilepsy, iEEG is a more precise measurement - in
terms of electrodes localization and signal quality - of brain
activity close to epileptogenic regions. It is also less sensi-
ble to eye or muscle artifacts. However, using iEEG for the
detection of epileptic seizures remains challenging. Indeed,
the position, type and number of electrodes may vary across
patients and recording sessions. Also, in specific subtypes
of epilepsy (especially focal epilepsy), the ictal activity may
affect only a subset of the available electrodes.

The first methodological contributions to the problem of
automatic seizure detection date back to the 1970s [1, 2]. In
almost fifty years, contributions to this problem have focused
on extracting relevant features (e.g., temporal, spectral) from
the data and developing algorithms to discriminate between
“ictal” or “non-ictal” data using a classifier. For a compre-
hensive review of the features used in seizure detection algo-
rithms, see [3, 4]. In [5], the authors proposed a 3-feature
method to detect seizures using non-overlapping 2s segments
of iEEG data recorded on two channels. The method was
based on the discriminant analysis of the features. It was val-
idated on a dataset of iEEG epochs equivalent to 1h of data
for 8 patients and achieved a 90%− 100% accuracy and false
positive rate (FPR) of 1/h. Later, Yadav et al. [6] proposed
a patient-specific model which, when evaluated on 304 hours
of single-channel iEEG recordings for 14 patients, reached
100% specificity (FPR=0/h) and 92.2% sensitivity. More re-
cently, Grewal and Gotman proposed in [7] a seizure warning
system which uses spectral features extracted from data fil-
tered in different frequency bands. This system was validated
on an iEEG dataset which consists of 389 hours of data for 19
patients and with 9 depth contacts. The authors report a sensi-
tivity of 89.4% and a FPR of 0.22/h. With temporal, spectral
and complexity features spatiotemporally integrated using a
fuzzy rule-based system in [8], the authors obtained a 98.7%
sensitivity and 0.27/h FPR on 302 hours of iEEG data for 21
patients. However, the method is tested on 6 channels previ-
ously selected by an expert. Although the results reported in
these contributions are remarkable, the proposed methods are
often validated on iEEG data with a few selected channels.
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Even for a trained clinician, selecting relevant channels in a
large dataset, with multiple patients, can be a tedious task.
In [9], a one-class Support Vector Machine (SVM) novelty
detection reaches 97.1% sensitivity and 1.56/h FPR on ap-
proximately 200 hours of data for 5 patients implanted with
a number of grid or strip electrodes ranging from 20 to 34.
In [10], the authors used the total energy of the data, filtered in
17 different frequency bands. Once extracted on 1 s epochs,
the feature vectors of K = 3 consecutive epochs are con-
catenated into a single “meta”-feature vector. These “meta”
vectors are classified using a linear SVM with fixed parameter
C = 1/1000. Concatenating the feature vectors on consec-
utive epochs allows taking into account dynamical changes
within the data. This method is evaluated on 875 hours of
iEEG data from 10 patients. As opposed to other contribu-
tions mentioned above, the full set of electrodes (from 34 to
114) was used. The authors report a 100% sensitivity on 8
patients out of 10 and an average FPR of 0.6 per 24 hours.

2. MATERIALS AND METHOD

This paper proposes a patient-specific supervised algorithm
to detect seizures in iEEG recordings. As opposed to seizure
warning systems, the detection is not done in real-time.
Ideally, to automatically annotate long iEEG recordings in
databases, one may want to process “long” data segments.
However, given that the events we want to detect (seizures)
can be relatively short (from 10s to several minutes), the
duration of the data segments processed by our algorithm
should be of the order of seconds. In the following, we chose
to analyze 5 s data segments. Indeed, for all the patients
considered in this work, the shortest annotated seizure was
12s long. Therefore, by analyzing 5 s segments, a seizure
would consist of - at least - two consecutive epochs labeled
as “seizure”. The proposed statistical learning algorithm con-
sists of two main steps. The first step consists in training a
Logistic Regression (LR) classifier on a dataset of 1 s seg-
ments using a nested cross-validation procedure. This step
produces a set of trained LR classifiers which is later used
in a second ensembling step. In this step, a dataset of 5 s
segments is used to train a classifier which results from an
ensembling of classifiers trained on the 1 s segments. Each
5 s data segment is divided in 1 s segments and probabilistic
predictions on these 1 s segments are combined into a single
prediction.

2.1. Recordings

The data used in this paper consists of data from the European
multi-center EPILEPSIAE database [11]. A total of 253 pa-
tients, with days of recordings, were included. Among these
patients, 59 have iEEG recordings. For this work, we chose
to consider a subgroup of 24 patients suffering from pharma-
coresistant focal epilepsy and with a minimum of 2 annotated

seizures. For each patient, the data was recorded from depth,
strip or grid electrodes, in at least two sessions called records.
The sampling rate (from 256Hz to 1024Hz) and the number
of electrodes (from 25 to 124) were different across patients
but did not change across the records of a given patient.

Several methodological contributions to the problem of
seizure prediction (classifying segments of data as either pre-
ictal or interictal) have been proposed in the last decade [12,
13]. However, to the best of our knowledge, no seizure detec-
tion algorithm was evaluated on this database.

2.2. Detection algorithm

Our seizure detection pipeline consists of five different stages:
preprocessing, feature extraction, classification of 1 s seg-
ments using a nested cross-validation procedure, classifi-
cation of 5 s segments with an ensemble of classifiers and
validation. This section presents the different steps of our
method.

Data selection and preprocessings

For each patient, the records which contain at least 2 anno-
tated seizures are used to train our algorithm whereas the
other records (which might not contain annotated seizures)
are used for the validation. The data is split into non-
overlapping 1 s epochs. A linear detrend is applied to each
epoch and the data is downsampled at 256Hz. An auto-
matic rejection of epochs containing flat channels is used.
No filtering or artifact rejection is applied. Each preprocess-
ing is applied using MNE using the Python programming
language [14].

In the following paragraph, we explain how the two
datasets (1 s and 5 s segments) are created from the available
records. For the second dataset, each 5 s data segment was
epoched using a 1 s window with 50% overlap. Therefore,
each 5 s data segment corresponds to nine 1 s epochs. Half of
the available annotated seizures (complete seizures) was used
for each dataset. Note that electrographic seizures (without
clinical symptoms; visible only on EEG recordings) were not
considered. The epochs falling inside an annotated seizure
were labeled “seizure” (the positive class). For each dataset,
the number of “non-seizure” samples (the negative class) was
chosen to be 50 times the number of positive samples. In
each case, non-seizure data segments were chosen randomly
in non-annotated data. This method, which corresponds to
subsampling the negative class, is a usually used to reduce
the dramatic imbalance due to long recordings [15, 10]. Also,
“non-seizure” samples are required to be at least one hour
away from any seizure. This condition aims at ensuring that
the samples of the negative class are actual interictal samples,
not pre-ictal or post-ictal samples, and to avoid possible label
noise affecting samples close to seizure onset/offset.
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Feature extraction

A set of relevant time domain and frequency domain features
is extracted from each epoch. The features which are com-
puted electrode by electrode consist of: i) total energy of the
data filtered in 18 frequency bands (from 0.5Hz to 35Hz with
bandwidth of 3Hz and from 35Hz to 105Hz with 10Hz band-
width) using a zero-phase filter similarly to [10] ; ii) decorre-
lation time as well as Hjorth mobility and Hjorth complexity
parameters [16] ; iii) the `2-norm of the approximation and
detail coefficients obtained from a 6-levels Wavelet decom-
position using a Daubechies db4 wavelet. The features also
include correlation features which were used in the winning
submissions to the Upenn and Mayo Clinic Seizure Detec-
tion Challenge [17] as well as the American Epilepsy Society
Seizure Prediction Challenge [18]. These features consist of
the eigenvalues and the upper part of the correlation matrix,
whose size equals the number of electrodes, computed either
from the time series or from the power spectrum of these time
series.

Classification of 1 s data segments

After the feature extraction, we used an implementation of
Logistic Regression (LR) classifier with ElasticNet penalty
from the Lightning Python module [19]. This choice of
penalty allowed us to impose sparsity on the coefficients of
the model and select relevant features. In the following, the
weight of the `1 penalty term is fixed to 0.001. Only the
weight of the `2 norm is optimized. The classifier was trained
using the SAGA algorithm [20]. To avoid overfitting, the
performance of the classifier on the dataset of 1 s epochs was
evaluated using two nested levels of cross-validation. At the
top level, a 10-fold cross-validation is used. For each split
Xtrain, Xtest, the logistic regression classifier is wrapped in
a GridSearchCV object (Scikit-Learn [21]) which uses an
inner 5-fold cross-validation. The GridSearchCV object, fit-
ted on Xtrain, uses the inner cross-validation to estimate the
“best” regularization parameter C using, as metric, the area
under the Receiver Operating Characteristic (ROC) curve,
ROC AUC score. This metric is usually used with imbalanced
datasets as it does not suffer from class imbalance. Once
fitted, the GridSearchCV object returns a “best estimator”
(the LR with the optimal regularization parameter C) which
is saved. This “best estimator” is used to make predictions
on the test data Xtest from the outer cross-validation. The
performance of this estimator is also evaluated using the ROC
AUC score.

Ensembling step: classification of 5 s data segments

The 10 fitted LR classifiers obtained from the previous step
are combined into a single classifier, called Weighted Ensem-
ble (WE) classifier, as follows. Recall that each 5 s data seg-
ment corresponds to nine 1 s epochs. The j-th (1 ≤ j ≤ 10)

fitted classifier gives a probabilistic prediction pi,j ∈ [0, 1]
that the label of the i-th epoch (1 ≤ i ≤ 9) is “seizure”.
Weights (wj)1≤j≤10 such that

∑
j wj = 1 are associated to

the classifiers and the predicted probability that the i-th epoch
is labeled with “seizure” is defined to be p̃i =

∑
j wjpi,j . The

weights (wj)1≤j≤10 encode how much each of the fitted clas-
sifiers contribute to values (p̃i)1≤i≤9. These weights are pa-
rameters of the WE classifier. Eventually, the probability that
a 5 s data segment is labeled with “seizure” is the arithmetic
mean of (p̃i)1≤i≤9.

A 5-fold cross-validation procedure is used to evaluate the
performance of this approach on the 5 s dataset. For each split
Xtrain, Xtest of the data, Xtrain is used to estimate the opti-
mal set of weights for the WE classifier. To obtain the op-
timal set of weights, an implementation of Sequential Least
SQuares Programming (SLSQP) is used to minimize the log
loss between the true predictions (for the train data) and pre-
dictions given (on each 5 s data segment) by

∑
1≤i≤9 p̃i un-

der the constraints that each weight belongs to (0, 1) and the
weights sum to 1. Once fitted, the classifier is evaluated on
Xtest. As above, the evaluation metric is the ROC AUC score.

Results obtained on 5 s data segments with this WE clas-
sifier are reported in Fig. 2. To confront our algorithm to a
recently proposed method, we compared it our reimplemen-
tation of the seizure detection algorithm described in [10]: a
5 s data segment is epoched using non-overlapping 1 s win-
dows. On each 1 s epoch, only total energy features (in differ-
ent frequency bands) are extracted from the data. The feature
vectors corresponding to each of the five epochs are concate-
nated into a single feature vector which is later classified us-
ing a linear SVM with regularization parameter C = 1/1000,
as suggested by the authors.

3. RESULTS

The results presented in Fig. 2 show that the average ROC
AUC score of the WE classifier, evaluated using a 5-fold
cross-validation described in Section 2.2, is almost prefect
in most of the cases except for a single record. Comparing
these results to the ones reported in Fig. 3 validates the idea
that the ensemble method discussed in Section 2.2 actually
allows for better predictive performance as opposed to a sin-
gle LR model. Since our WE classifier is not coupled with
an artifacts rejection method, the ensemble method failed
on a single record for which high amplitude artifacts intro-
duced many outliers among the extracted features. Fig. 2
also shows that for most training records, the variance of the
ROC AUC score is also decreased. As mentioned above, the
performance of the WE classifier is compared to a state-of-
the-art algorithm for seizure detection in iEEG recordings.
In Fig. 1, each dot above the solid black line represents a
training record for which the WE classifier outperformed the
algorithm described in [10]. It was the case in 29 training
records out of 33. Still, the performance of both methods is
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Fig. 1: Scatter plot of the ROC AUC scores (averaged) ob-
tained on record-specific datasets of 5 s data segments using
a 5-fold cross-validation. The solid black line represents the
straight line joining the point (0, 0) to (1, 1).

Records
0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
O

C
 A

U
C

Fig. 2: ROC AUC scores (averaged) obtained on record-
specific datasets of 5 s data segments using 5-fold cross-
validation with the WE classifier. Each bar corresponds to
an Epilepsiae record and adjacent bars of the same color cor-
respond to records from the same patient.

evaluated on a dataset whose class imbalance is not realistic.
Indeed, the comparison of these methods on unseen records
is more meaningful.

Evaluation on complete left-out records

For each patient, the records which were not used for train-
ing, “left-out records”, were used for evaluation. As the WE
classifier, by design, outputs class probabilities, we chose to
evaluate the performance of our method using the ROC AUC
score. The validation of our method was conducted using
113 ± 48 hours of iEEG data. When the ROC AUC score is
computed on each left-out record (with at least one annotated
seizure), the ROC AUC score obtained with the WE classi-
fier is 0.81 (±0.19), whereas the score is 0.62 (±0.28) for
the algorithm from Kharbouch et al. By combining all the
predicted probabilites from all left-out records, a single ROC
AUC curve can be computed for each method. The area un-
der this curves gives a measure of the overall performance of a
given method. The results show that the WE classifier reaches
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Fig. 3: ROC AUC scores (averaged) obtained on record-
specific datasets of 1 s data segments using 5-fold cross-
validation with the LR classifier.

a ROC AUC score of 0.87 whereas the ROC AUC score of the
other method is 0.813.

4. DISCUSSION AND CONCLUSION

In this paper, we proposed a seizure detection algorithm
which is designed to analyze 5 s data segments by combining
prediction from classifiers fitted on a dataset of 1 s epochs.
The results presented in this paper show that a weighted en-
semble of LR classifiers outperforms a given state-of-the-art
seizure detection algorithms on left-out records. However, a
comparison with other state-of-the-art methods and perfor-
mance metrics should enrich the evaluation of our method.
Also, the influence (on the performance on left-out records)
of the number of classifiers in the ensemble should be care-
fully investigated. The results of the paper also show that the
performance of the WE classifier may drop when applied on
records with artifacts. Therefore, the WE classifier could be
further improved by being coupled with an automatic artifacts
rejection method. Note that the proposed method is flexible
as it may be applied with any classifier that can predict class
probabilities. Eventually, similarly to [13], the methodology
presented in this paper could be used for seizure prediction,
where one aims at classifying a segment of data as either
preictal, ictal, postictal or interictal. Such a method could
allow identifying pre-seizure states in (i)EEG data.
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