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ABSTRACT
This study proposes a tensor factorization algorithm for electroen-
cephalographies (EEGs) that incorporates the geometric structure of
the electrode location. The purpose is removing noise caused by
EEG activities which are irrelevant to stimuli presented to a sub-
ject from single-trial event-related potential (ERP) data. Canonical
polyadic decomposition (CPD) is extended by adding a regulariza-
tion term that controls the spatial smoothness of the decomposed
components on a scalp. An initialization method using geometrical
information is also proposed. The geometric structure of an EEG
signal is expressed as an undirected graph where the similarities be-
tween electrodes are defined by their relative distances on a scalp.
The effectiveness is demonstrated in a noise-removing experiment
using pseudo-ERP, where the proposed method achieved better per-
formance than the conventional CPD.

1. INTRODUCTION

Electroencephalography (EEG) is an electrical recording of brain ac-
tivities and has been widely used in such diverse research areas as
psychology, cognitive science, medicine, and engineering. An event-
related potential (ERP) is a time-locked brain response to stimuli and
usually analyzed after trial-wise averaging to weaken noise that is ir-
relevant to stimuli presented to a subject [1]. Noise-removal (signal
source separation) problems to realize single-trial ERP analysis have
gathered much attention from researchers because such an averaging
procedure conceals variabilities among trials.

Matrix factorization algorithms including independent compo-
nent analysis (ICA) [2, 3] have been studied to tackle this problem.
However, such algorithms can only be applied to a two-way array,
i.e., a matrix, whereas ERP data usually have more than two modes,
e.g., time, electrodes, frequencies, trials, subjects, and experimen-
tal conditions, which naturally leads us to expresses such data as
a multi-dimensional array, or a tensor. Therefore, the application
of tensor factorization algorithms to ERP data has been studied re-
cently [4, 5]. Canonical polyadic decomposition (CPD, also known
as CANDECOMP or PARAFAC) [6, 7] has been commonly used for
its high interpretability and simplicity [8, 9, 10, 11].

However, it is well known that EEG data are noisy and sensi-
tive to the outliers caused by body movements such as eye blinks.
The amount of data is usually small, which causes the above stat-
ical noise-removal methods to slip into over-fitting and fail to find
meaningful components.

Regularization can be used to avoid over-fitting by adding
the norm of parameters or incorporating prior knowledge of the
data [12]. For example, the geometrical information of face images
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was utilized to regularize the nonnegative matrix factorization [13].
The same regularization technique using the geometric structure of
the EEG electrode location [14, 15] was used to create a common
spatial patterns filter, which is widely used in two-class classifi-
cation problems with EEG data. An EEG is a summation of an
electrical recording of numerous neuron activities from which we
can reasonably assume that multiple electrodes will observe signals
that resemble each other if they are closely located on a scalp. How-
ever, existing CPD applications to EEG data have failed to utilize
the spatial smoothness of EEGs and often identify spatially bumpy
components [8, 11].

In this study, a new tensor factorization algorithm that is based
on CPD and incorporates geometrical information of the EEG elec-
trode location is proposed. In the rest of paper, the standard CPD is
reviewed at first. Next, the graph regularized canonical polyadic de-
composition (GCPD) is introduced. An initialization method using
the graphical structure is also proposed. Finally, the effectiveness of
the conventional and proposed methods are demonstrated in a noise-
removing experiment.

2. BRIEF REVIEW OF CPD

A scalar, a vector, a matrix, and a tensor are respectively denoted by
a standard Italic letter, a boldface Italic lowercase letter, a standard
Roman capital letter, and an Euler script letter as a, a, A, and A. The
i-th entry of a vector a is denoted by a(i). An element of a matrix
that is specified by i-th row and j-th column is denoted by A(i, j).
Similarly, an element of a tensor that is specified by the index of
each mode n1, n2, . . . , nN is denoted as A(n1, n2, . . . , nN ).

A N -th order rank-1 tensor is the outer product of N vectors:

A = a(1) ◦ a(2) ◦ · · · ◦ a(N) (1)

A ∈ RI1×···×IN , a(n) ∈ RIn×1

1 ≤ n ≤ IN ,

where ◦ is outer product of vectors.
CPD is formulated as a tensor decomposition into a sum of rank-

1 tensors as depicted in Fig. 1:

X ≈ X̂ =

R∑
r=1

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r

= I×1 A1 ×2 A2 ×3 · · · ×N AN (2)

An =
(
a
(n)
1 ,a

(n)
2 , . . . ,a

(n)
R

)
∈ RIn×R,

where vector a(n)
r is called the r-th basis of the mode-n, each rank-1

tensor a(1)
r ◦a(2)

r ◦ · · · ◦a(IN )
r is called the r-th component, I is the
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identity tensor, and ×n is the n-mode product [16]. The constant
R and the matrix An is called the CPD rank and the factor matrix
of the n-th mode, respectively. The above decomposition is called
rank-R CPD. This decomposition is unique under mild conditions
up to the ambiguities for scaling among modes and for permutation
among components [17]. We assume that input tensor X can be ap-
proximated by reconstructed tensor X̂.

Bases of each mode can be found by minimizing the following
objective function f1(X, X̂):

f1(X, X̂) = ‖X− X̂‖F +

N∑
n=1

λn‖An‖F, (3)

where the constant λn is the norm regularization parameter, ‖ · ‖F is
the Frobenius norm. The first term of (3) is a divergence between X

and X̂, and the second term is a norm regularization term. After the
initialization of each factor matrix, the alternating gradient descent
algorithm can be used for solving the minimization problem, which
continues to update one factor matrix while fixing the others until
convergence as follows:

An ← An − η∇Anf1, (4)

where ∇Anf1 is a gradient with respect to An and η is a learning
rate.

The initialization of factor matrices is usually done using
random numbers or higher order singular value decomposition
(HOSVD) [18]. When HOSVD is used for initialization, an in-
put tensor is unfolded into the matrices along with each mode
at first. The mode-n unfolding (matricization) of a tensor X ∈
RI1×I2×···×IN is defined as the rearrangement of the tensor el-
ements into the matrix Xn ∈ RIn×I1I2...I(n−1)I(n+1)...IN along
with the n-th mode [16]. Then, a normal SVD is applied for each
unfolded matrix, and each factor matrix is initialized with the left
singular vectors that correspond to the R largest singular values.

After the updating converges, noise free tensor X∗ is obtained:

X
∗ =

∑
r∈P

a(1)
r ◦ a(2)

r ◦ · · · ◦ a(N)
r , (5)

where P is a set of component indexes that correspond to the signal
of interest.

3. GRAPH REGULARIZED TENSOR FACTORIZATION

In this section, CPD is extended to GCPD, which uses the geometri-
cal information of the electrode location for both regularization and
initialization. First, we explain a method that models the geometri-
cal information of the electrode location using a graph. Second, we
introduce a regularization method for CPD that constrains the spa-
tial smoothness of the components. Third, we explain how to use the
graph structure for initialization.

3.1. Obtaining Adjacency Matrix

The local structure between multiple nodes (e.g., electrodes) of the
n-th mode can be expressed by an undirected graph and its corre-
sponding adjacency matrix Wn, whose element Wn(i, j) expresses
the similarity between the i-th and j-th nodes. One of the meth-
ods to measure the similarity between the two nodes is heat kernel
weighting:

Wn(i, j) = exp

(
−‖zi − zj‖2

σ

)
, (6)
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Fig. 1. Schematic image of CPD and the noise removal procedure.
CPD decomposes an input tensor into the sum of the R rank-1 ten-
sors. Then, a subset of the components are selected and summed to
make a noise free tensor.

where zi is the vector to express the i-th node and the constant σ is a
variance parameter [19]. Wn(i, j) increases when the i-th and j-th
nodes are similar and vice versa.

EEG electrodes are usually placed on a scalp according to the
International 10-20, 10-10, or 10-5 systems [20, 21, 22]. The sys-
tems assume that the electrodes are placed on a sphere and define
the i-th electrode position using a three-dimensional vector as zi =
(xi, yi, zi) setting the sphere’s center as the origin.

The spatial structure of EEG has been mentioned so far but the
temporal smoothness can be also considered in the same way mea-
suring distances between time indexes to construct a graph.

3.2. Graph Regularization

Given an adjacency matrix, the smoothness of the bases on a given
graph can be measured using the following term:

Sn (An,Wn) =
R∑

r=1

IN∑
i,j=1

‖An(i, r)−An(j, r)‖2Wn(i, j)

= Tr(A>nLnAn) (7)
Ln = Dn −Wn (8)

where Tr(·) is the trace of a matrix, the matrix Dn is a diagonal
matrix, whose diagonal elements are a column (or equivalently a
row) sum of Wn. The matrix Ln is called a graph Laplacian [23].
In spectral graph theory, this term is called the graph Laplacian
quadratic form, and increases when the difference between An(i, r)
and An(j, r) is big although Wn(i, j) is big (e.g., the i-th and j-th
nodes are close to each other on the graph) [19, 24].

Adding this term to Eq. (3), the objective function of GCPD is
formulated as follows:

f2(X, X̂) = ‖X− X̂‖F +

N∑
n=1

(λn‖An‖F + ψnSn (An,Wn)) ,

(9)

where the constant ψn is a graph regularization parameter. By min-
imizing this function we expect that bases can be found that respect
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the intrinsic graphical structure. A gradient of f2 with respect to An

is given as follows:

∇Anf2 = (X̂n − Xn)Bn + (λnI + ψnLn)An (10)
Bn = AN �AN−1 � · · · �An+1 �An−1 � · · · �A1, (11)

where I is the identity matrix, � is the product (column-wise Kro-
necker product) [25], and the matrix X̂n is the mode-n unfolding of
X̂, which is calculated as:

X̂n = AnB
>
n . (12)

Not all the modes have to have the graphical structure because Wn

can be set to the zero matrix if the graphical structure of the n-th
mode is not defined. Iterative updating is performed as in Eq. (4).

3.3. Initialization Using Graph Fourier Bases

We propose to incorporate graphical smoothness not only for reg-
ularization but also initialization. The bases of each mode found
by GCPD should respect its geometric structure: in other words,
such bases make smoothness defined by Eq. (7) small. Therefore,
the proposed initialization method is given by solving the following
minimization problem:

A∗n = argminS(An,Wn). (13)

The solution of this minimization problem is given by the following
eigenvalue problem [19]:

Lnb
(n) = pb(n). (14)

Let the dimension of the n-th mode be In. Since the graph Laplacian
is a In–by–In real symmetric matrix, it has a complete set of the In
eigenvectors {b(n)

r }r=0,...,In−1 associated with eigenvalues pr that
satisfy 0 = p0 < p1 ≤ · · · ≤ pIn−1. The eigenvectors of the graph
Laplacian is called the graph Fourier bases (GFB) [24]. The GFBs
corresponding to a smaller eigenvalue reduce the following term:

S′(b(n)
r ,Wn) =

IN∑
i,j=1

‖b(n)
r (i)− b(n)

r (j)‖2Wn(i, j). (15)

In other words, the following relation holds:

0 = S′(b
(n)
0 ,Wn) < · · · ≤ S′(b(n)

IN−1
,Wn). (16)

In our proposed method, each factor matrix is initialized with
the R GFBs corresponding to the R smallest eigenvalues.

While HOSVD initializes the factor matrices based on the or-
thogonality and the variance explained by the direction of the singu-
lar vectors and fails to consider the graph structures, the GFBs are
also orthogonal as well as they consider the smoothness on a given
graph. Moreover, they depend only on a graph Laplacian matrix.
Therefore, they always produce the same initialization result with
the same Laplacian matrix (the same EEG electrode location) even
if a subject or an experimental condition is different. HOSVD is de-
pendent on input data, which means the quality of initialization will
be largely affected by the data amount and the artifacts in the data.
This can be an advantage for the proposed method because EEGs are
easily affected by such artifacts as body movements and the amount
of data is often severely limited.

4. EXPERIMENTAL EVALUATION

A noise removal experiment is described in this section. Since it is
difficult to discriminate which decomposed components really cor-
respond to a signal (an EEG signal caused by brain activities of inter-
est) or a noise (a signal caused by other brain activities or artifacts),
a pseudo ERP data were created using real EEG signals to make it
possible to evaluate the proposed method and the standard CPD ob-
jectively.

4.1. Data Acquisition

All EEG signals were recorded in a soundproof room with 25 scalp
electrodes placed according to the International 10-20 system at a
sampling rate of 1000 Hz. Three healthy subjects aged from 23 to
26 years old without any neurological disorders participated in the
experiment. All experimental procedures were approved by the Eth-
ical Review Board of Nara Institute of Science and Technology. The
recorded EEG signals were down-sampled to 200 Hz, and a band-
pass filter was applied between 0.01 Hz and 30 Hz.

An auditory oddball paradigm was used to elicit ERP of P300
from the subjects. A random sequence including 2 kHz and 1 kHz
sound stimuli was presented to each subject by earphones. All the
sound stimuli had a duration of 200 milliseconds and the intervals
between them were 1.4 seconds. 2- and 1 kHz sounds were respec-
tively presented 50 and 200 times. Subjects counted the number of
2 kHz sound stimuli (target trials) while ignoring 1 kHz sound (non-
target trials). It is well documented that the ERP of P300 appears
more conspicuously when a subject is presented a target stimuli than
a non-target stimuli [1]. After repeating this procedure twice (100
target and 400 non-target trials in total), the subjects were told to re-
lax without a task or a stimulus to record their resting state EEG for
two minutes.

4.2. Validation Using Pseudo-ERP Data

From the resting state EEG signal of each subject, 100 epochs of 850
milliseconds duration (170 time samples) were extracted randomly.
All the target-trials obtained from the oddball paradigm were av-
eraged across trials. Then, the resulting averaged ERP that stands
for signal was added to the each of 100 resting state epochs that
stands for noise to make the 100 trials of pseudo-ERP data. The
phase of the added ERP was randomly shifted by adding a random
number sampled from the normal distribution with mean 0 ms and
standard deviation 15 ms to its onset, and the amplitude was also
randomly changed by multiplying a random number sampled from
the normal distribution with mean 1 and standard deviation 0.4. The
averaged non-target trial ERP was also added to another 100 rest-
ing state epochs as same as the target-trial ERP. Concatenating the
two data, a third order tensor X ∈ R170×25×200 with modes of
time× space(electrodes)× trials was made for each subject.

The noise-removing performances of conventional CPD, GCPD
with HOSVD initialization, and GCPD with GFB initialization were
compared. The rank of CPD and GCPD were set to 20 without tun-
ing. The noise removal performances were measured by root mean
squareRMSE).

4.3. Component Selection

As with other source separation techniques, CPD decomposes an
input signal into multiple components without identifying the com-
ponents of interest. Therefore, they must be selected based on prior
knowledge [26].
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Table 1. RMSE of all subjects
RMSE

Subject 1 Subject 2 Subject 3
CPD 3.96 (s.d. 3.15) 7.12 (s.d. 6.29) 6.13 (s.d. 4.57)
GCPD with HOSVD 3.41 (s.d. 3.03) 7.12 (s.d. 6.29) 6.39 (s.d. 6.50)
GCPD with GFB 2.87 (s.d. 2.05) 6.88 (s.d. 4.60) 4.05 (s.d. 4.36)
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Fig. 2. Each mode of the component that had the highest ICV. (Left) the temporal mode, (middle) the spatial mode, and (right) the trial mode
with the highest ICV. From the first to one-hundredth elements correspond to target trials (blue bars) and the rest to non-target trials (red bars)

Target-trials elicit larger ERP than non-target trials. If a compo-
nent corresponds to an ERP, the magnitude of bases of its trial modes
bases differ among the set of elements corresponding to target trials
and the set of the non-target trials. On the other hand, if a compo-
nent doesn’t correspond to an ERP, the magnitude of the trial mode
bases will take similar values among elements. Based on this idea,
the inter-condition variance (ICV) of the r-th component is defined
as follows:

ICV(r) =
∑
i∈PT

∣∣∣Atrial(i, r)
∣∣∣− ∑

i 6∈PT

∣∣∣Atrial(i, r)
∣∣∣ , (17)

where PT is a set of component indexes that corresponds to the tar-
get trials. Components with a high ICV were chosen as ERP com-
ponents.

A previous work adopted a similar approach [8] and selected
components based on the p-value of a statical test to the magnitude of
the subject mode to investigate the difference between subjects with
reading and with attention disabilities. ICV is simpler and more in-
stinctive than the p-value of a statical significant test, which needs a
sufficient amount of data to find significant differences and assump-
tions the about data, e.g., distribution or variance.

We did not use only ICV to select components but also manually
inspected each component, and found that the result of the compo-
nent selection by ICV agreed well with that of the manual selection.
We selected the five components that had the highest ICV in this
study.

4.4. Result

The noise-removal performance of GCPD was superior to CPD for
all subjects when it was used with GFB initialization as summarized
in Table 1. The averaged RMSE values with the standard deviation
(s.d.) were shown. The average RMSE for each subject was calcu-
lated across all the 200 trials and the 25 electrodes (5000 RMSEs in
total).

Fig. 2 illustrates the bases of the component with the highest
ICV obtained by GFB-GCPD from the subject 3. The temporal
mode basis shows the clear appearance of P300. The spatial mode
basis shows the amplitude distribution on the scalp. It is spatially
smooth and has the highest activity near the center of the scalp,
which is physiologically plausible. The trial mode basis is shown for
both of trial and non-target trials. The mode is important for single-
trial analysis because it is possible to know that which trials affect
to a cognitive state of a subject more strongly than others. From the
first to one-hundredth elements correspond to target trials (shown in
blue bars) and the rest to non-target trials (in red). It can be seen
that magnitude are larger at the target-trials than the non-target ones,
which is why this component is selected by ICV.

5. CONCLUSION

This paper proposed a tensor factorization method that incorporates
the geometrical structure of the EEG electrode location.

Although our proposed algorithm’s noise-removal performance
was significantly superior to the conventional method, several ques-
tions remain uninvestigated. First, the decomposed components cor-
responding to ERP were automatically selected in a heuristic manner
using the difference of the trial mode bases between experimental
conditions. Even though this approach worked well in our study, a
better component selection method might exist. Second, we solely
measured the electrode similarities based on electrode location, but
they can also be measured in other ways, for example, based on the
brain’s functional connectivity. Lastly, an initialization method using
GFB was proposed. GFBs are orthogonal to each other as same as
bases given by HOSVD initialization. However, it has been pointed
out recently that orthogonality might not be a good property [27]. It
is worth investigating an non-orthogonal initialization bases consid-
ering a graph structure.
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