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Abstract— Brain-machine interfaces (BMIs) have been an important
research area in closed-loop neuroscience and neuroengineering. In real-
time neuroscience applications, many issues require special considera-
tion, such as trial variability, spike sorting noise or multi-unit activity.
For a BMI application of detecting acute pain signals, we discuss several
practical issues in BMI applications and propose a new approach for
change-point detection based on ensembles of independent detectors.
Motivated from unsupervised ensemble learning, the “ensembles of
change-point detectors” (ECPDs) combine the decision results from
multiple independent detectors, which may be trained from data
recorded at different trials or derived from different methodologies.
The goal of ECPDs is to reduce the detection error (in terms of false
negative and false positive rates) in online BMI applications. We validate
our method using computer simulations and experimental recordings
from freely behaving rats.

Index Terms— Brain-machine interface, change point detection, en-
semble learning, ensembles of change-point detectors, acute pain.

I. INTRODUCTION

An important problem in closed-loop neuroscience experiments is
to quickly identify abrupt changes in neural ensemble spike activity
induced by external stimuli or internal changes in brain state. In
real-time or closed-loop BMI applications, the challenge is to design
online detection algorithms that can quickly and reliably detect the
change points. Here, we consider such a BMI application for detect-
ing acute pain signals [10]. Previously, we have designed several
algorithms for testing the experimental recording off-line [5], [6].
For BMI applications, we need to consider several critical issues: (i)
limited sample size for training the model; (ii) data nonstationarity
or trial variability induced by behavior or adaptation; (iii) multiunit
activity corrupted by spike sorting noise [9], [8], which affects the
overall signal-to-noise ratio (SNR). It is worth pointing out that
model estimation involves a non-global optimization procedure (i.e.,
multiple local maxima and sensitivity to initial conditions), and the
convergence issue of model identification is more pronounced while
dealing with a complex model (i.e. large number of neurons) and
small data sample size. The performance of change-point detection
in BMI applications is assessed by the detection speed and accuracy.
We have addressed the detection speed issue in other published
work [11]. Here we focus our effort on the detection accuracy
(sensitivity and specificity), assessed by the false positive (FP) and
false negative (FN) rates.

In this paper, motivated from the idea of ensemble learning, we
propose a novel framework for change-point detection. Specifically,
we construct a set of independent “weak” change-point detectors,
from which we establish a meta detector based on optimal decision
rules to improve the detection results. We investigate the practical
issues in the context of BMI application for detecting acute pain
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signals based on neuronal ensemble recordings. Our method is
validated using computer simulations and experimental recordings
from freely behaving rats. Through computer simulations, we sys-
tematically investigate the impact of cell specificity (i.e., positively
or negatively modulated neuronal response to pain stimuli), SNR,
and trial variability on the performance of ensembles of change-
point detectors (ECPDs). Finally, we conclude the paper with
discussions on future work.

II. METHODS

A. Model-based Method

Our model-based method for change-point detection is based on
state space analysis [3], [5]. Let yk = [y1,k, . . . , yC,k]> denote a
C-dimensional population vector, with each element consisting of
the neuronal spike count at the k-th time bin (bin size ∆). Let the
latent univariate variable zk ∈ R represents an unobserved common
input that drives neuronal ensemble spiking activity.

1) Poisson Linear Dynamical System: We consider a Poisson
linear dynamical system (PLDS) [5], [16], where the spike activity
of a population of C neurons are assumed to be drawn from the
following generative model:

zk = azk−1 + εk (1)

yk ∼ Poisson
(

exp(czk + d)∆
)

(2)

where the state equation (1) describes a first-order autoregressive
(AR) model (0 < |a| < 1) driven by a zero-mean Gaussian noise
process εk ∈ N (0, σ2

ε ). The parameters c and d are unconstrained.
We use an expectation-maximization (EM) algorithm [16], [5] to
estimate the unknown state variables z1:T and parameters Θ =
{a, c,d, σε} from a set of observations y1:T .

2) Online Recursive Filtering: In online BMI applications, once
the model parameters are identified, we use a recursive (forward)
filter to estimate the latent state variable [5], [6]:

ẑk|k−1 = aẑk−1|k−1 (3)

Qk|k−1 = a2Qk−1|k−1 + σ2
ε (4)

ŷk|k−1 = exp(cẑk|k−1 + d)∆ (5)

Q−1
k|k = Q−1

k|k−1 + c>diag(ŷk|k−1)c (6)

ẑk|k = ẑk|k−1 +Qk|kc
>(yk − ŷk|k−1) (7)

where Qk|k = Var[ẑk|k] denotes the filtered state variance. In our
online filtering algorithm, we set the initial condition ẑ0|0 = 0 and
Q0|0 from the previously trained model.

3) Change-Point Detection: From the online filtered estimate
ẑk|k, we compute the Z-score related to the baseline: Z-score =
ẑk|k−mean of zbaseline

SD of zbaseline
and convert it to probability [4], [5]:

P (Z-score > ξ0) = 1−
∫ ξ0

−∞

1√
2π
e
−u2

2 du (8)

The criterion of Z-score change is determined by a critical threshold
ξ0. Using the 95% significance level (ξ0 = 1.65), it is concluded
that when Z-score − CI > 1.65 or Z-score + CI < −1.65, where
the CI denotes the confidence interval: 2

√
Qk|k/SD of zbaseline.
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B. Model-free Method

Under the Poisson assumption, we compute the baseline firing
rate of a neuron, say λ0. If we consider the threshold of significant
change in firing rate (in the positive direction) as λth = λ0+3

√
λ0.

We can compute the log-likelihood ratio (LLR) as

LLR = y log
λth
λ0
− (λth − λ0) (9)

Our model-free method uses a so-called CUSUM (cumulative
sum) approach to detect a change point based on LLR [6]. Setting
S0 = 0, we update the cumulative sum as follows

Sk = max
c=1,...,C

{
Sc,k

}
= max

c

{
max

{
0, Sc,k−1 + sc,k

}}
(10)

where sc,k is computed from the LLR (9) using yc,k from the c-
th neuron. If the cumulative sum of the statistic Sk is above a
predetermined threshold θ0 and the trend continues more than 150
ms and the trend is monotonic, then a decision is made regarding
the presence of a change point. The threshold θ0 in the CUSUM
algorithm controls the false alarm rate. An empirical choice is to
use the test statistic (twofold log-likelihood) being a chi-square
distribution with 1 degree of freedom: χ2

1,(1−α). If we set α = 0.01,
we have θ0 = 0.5× 6.64 = 3.38.

C. Ensembles of Change-point Detectors

Ensemble learning, in supervised or unsupervised form, has
been an active research topic in machine learning [13], [7], [14],
[18]. Ensemble learning is aimed to combine a set of possibly
“weak” learners (predictors, classifiers, detectors, etc.) to form a
more accurate “meta learner” for decision making. In unsupervised
ensemble learning, the decision is made without labelled data
[17], [12]. There are several differences in our current application
from other unsupervised ensemble learning: (i) In ensembles of
unsupervised classifiers, samples are independent, identically dis-
tributed (i.i.d.); whereas samples in our application are temporal
correlated multivariate time series. (ii) In traditional ensemble
learning, the predictors are derived from independent models of
different families; whereas our independent detectors are derived
from the same model family. (iii) We combine model-based and
model-free methods or integrate decisions from two brain regions
for change-point detection.

Given N independent detectors, at any time point, from (8) we
can derive a probability of significance change from each detector.
In general, assume that the j-th detector produces a probability of
change at time k: P (ωj,k|y0:k) with a prior probability Pj , then
the decision rule for ωk ∈ {0, 1} (1 denotes a change and 0 no
change) is formulated mathematically as follows:

Pr(ωk = 1) =

N∏
j=1

P (ωj,k|y0:k)Pj (11)

Similar to pattern classification [13], we can also design different
rules. Here, we consider two decision rules: greedy rule and
majority vote rule. The greedy rule claims a change as long as
one detector predicts the change. The majority vote rule states that
the class ωk = 0/1 that receives the largest number of votes is
selected as the consensus or majority vote, assuming equal Pj .

D. Combining Model-based and Model-free Detection

Our model-free approach for change-point detection is a greedy
method. Our previous empirical studies have shown that it tends to
produce similar or faster detection than the model-based approach.
However, the model-free approach is also sensitive to noise, thereby

prone to the FP. Normally, to minimize the FN rate, we impose a
a necessary condition of TP decision from the model-free method.

E. Combining Two Brain Regions

Among many brain regions, the primary somatosensory cortex
(S1) and anterior cingulate cortex (ACC) are two of the most
studied areas for pain-related perception [15], [20], [2]. The S1
encodes the sensory component of pain, whereas the ACC encodes
the aversive component of pain. However, neither of these areas are
pain-specific. Namely, they may encode other sensory or emotional
responses to non-noxious stimuli (e.g., touch, auditory tone, etc).
In our previous work, we found that S1 and ACC populations have
different sensitivity and specificity for pain encoding [5]. In general,
S1 tends to have high sensitivity for noxious stimuli, but it can also
cause false alarms for non-noxious stimuli. On the other hand, ACC
tends to have mixed or conjunctive coding for a variety of stimuli
related to emotion, nociception and anticipation. Therefore, it is
important to design specific decision rules for detecting acute pain
based on their response properties.

Given simultaneous S1 and ACC ensemble recordings, we cannot
use the greedy or majority vote rule. We envision two options. One
option is to use different priors in (11) for S1 and ACC, but the prior
probabilities may depend on specific dataset. In another option,
we consider a decision rule based on a dynamic cross-correlation
function (CCF) between the Z-scores Zk of two regions:

CCFk = (1− ρ)CCFk−1 + ρ
(
ZACC
k

)m(
ZS1
k

)n
(12)

where 0 < ρ < 1 is a forgetting factor, 0.5 ≤ m,n ≤ 1 are the
scaling exponents (in our analysis, we set m = n = 0.5). The idea
behind that is when two Z-scores follow a consistent trend, the CCF
will increase in absolute value, otherwise it will stay around the
baseline level. Similarly, we can compute Z-score of CCF relative
to the baseline. When the CCF area above the twofold SD exceeds
a threshold (e.g., 3), we will declare the change point.

III. RESULTS

A. Computer Simulations

a) Trial variability: We generate population spike trains of
C = 24 units using a PLDS model with assumed ground truth.
Each trial lasts 10 s and consists of 4 pain-modulated units (all
positively modulated), with randomly generated vector c and d in
Eq. (2). The values c and d are set within a predefined range to keep
the Poisson spike count at each time bin less than 8. The duration of
pain stimulus is 2 s. To simulate trial variability, we create different
configurations where the specified number of coefficients in vector
c associated with the pain-modulated neurons are varying across
trials. Without loss of generality, we define

Class 1: pain-modualted unit index ∈ {1, 2, 3, 4}
Class 2: non-pain-modulated unit index ∈ {5, 6}
Class 3: non-responsive unit index ∈ {7, 8, . . . , }

For the TP experiment, we train n = 100 models using all 100
randomly generated trials. After that, we apply all models to detect
changes in all trials, yielding an n×n matrix for each dataset. We
compute the average detection results based on single detector or
ECPDs using the majority vote. In this case, the testing set and
the training set are the same. The detailed results are summarized
in Table I and Fig. 1A. As seen, in nearly all configurations,
the ECPDs based on the majority vote outperforms the single
model-based detection accuracy in TP. The relative improvement
degree is greater in the presence of higher trial-by-trial variability.
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TABLE I
SUMMARY OF SIMULATION EXPERIMENTS (SETUP 1, C = 24). THE

SMALLER THE NUMBER OF INVARIANT CLASS-1 UNITS, THE HIGHER

TRIAL-VARIABILITY WITHIN A SPECIFIC DATA SET. DATASETS 1-4: LOW

TRIAL VARIABILITY; DATASETS 5-10: MEDIUM TRIAL VARIABILITY;
DATASETS 11-14: HIGH TRIAL VARIABILITY.

Dataset # trials #invariant invariant TP TP
Class-1 units Class-1 units (single) (ensemble)

1 100 3 1, 2, 3 95% 98%
2 100 3 1, 2, 4 93% 94%
3 100 3 1, 3, 4 96% 96%
4 100 3 2, 3, 4 95% 95%
5 100 2 1, 2 75% 86%
6 100 2 1, 3 79% 87%
7 100 2 1, 4 85% 88%
8 100 2 2, 3 87% 93%
9 100 2 2,4 77% 81%
10 100 2 3,4 84% 86%
11 100 1 1 52% 51%
12 100 1 2 56% 69%
13 100 1 3 67% 84%
14 100 1 4 75% 84%
15 100 0 46% 34%

Low variability Medium variability High variability
0

0.5

1

TP
 R

at
e Single Majority

0 10 20 30 40 50 60 70 80 90

Number of models detecting TP

0

50

100

N
um

be
r o

f t
ria

lsB

A

Fig. 1. (A) Average performance comparison between single-model detector
and ECPDs using the majority vote under low (with 3 invariant units),
medium (with 2 invariant units) and high (with 1 invariant unit) trial-to-trial
variability. (B) Histogram of the number of high-variability trials (Datasets
11-14) that can be detected as TPs. Among 400 trials, each trial is tested
with 100 trained models.

Among all 400 high-variability trials (Datasets 11-14), about 75%
of trials benefit from the majority vote rule; namely, the trials that
benefit from the majority vote are located within the right half of
distribution (i.e., support > 50, Fig. 1B).

To assess the FP rate in change point detection, we use a similar
setup but with fewer units (C = 12). In the training trials, it is
assumed that two Class-2 units fire in response to a presumed non-
pain stimulus (0.5 s duration) during the baseline with probability
q, and these 2 Class-2 units do not overlap with the 4 Class-1 units
mentioned above. We vary the probability q ∈ {0.1, 0.25, 0.5, 1}
and simulate n = 100 training and testing trials. In the testing
trials, we generate population spike responses with only “positive”
responses from these 2 Class-2 units, whereas the firing rates of
remaining 10 units are the same as the baseline. We train 100
models from all training trials and test them on all 100 testing trials,
from which the FP rate is computed using either single detector or
ECPDs. As seen in Table II, ECPDs significantly reduce the FP
rate based on the majority vote for a wide range of q values.

b) Noise: To investigate the impact of noise to change-
point detection, we add independent Poisson noise to population
spike activity across time and units. We vary the level of SNR:
10 log10

λsignal

λnoise
(note that Poisson mean is equal to variance),

TABLE II
SUMMARY OF SIMULATION EXPERIMENTS (C = 12). LARGER q

IMPLIES A LOWER SNR IN BASELINE AMONG TRAINING TRIALS.

Dataset prob. q accuracy FP FP
(single) (single) (ensemble)

16 1.0 85% 44% 25%
17 0.5 85% 27% 0
18 0.25 84% 16% 0
19 0.1 84% 9% 0
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Fig. 2. Average TP rate comparison between single model detector and
ECPDs (shaded) under different levels of SNR and trial variability.

where the SNR is constant across trials. We repeat the experiment
in simulation setup 1 and compare the TP rate between the single-
model detector and ECPDs. The results are shown in Fig. 2. As
seen, ECPDs outperform the single-model detector at medium and
high variabilities with various SNRs; however, the superiority of
ensemble learning is lost in the case of high trial variability and
very low SNR (i.e., −5 dB and 0 dB).

B. Experimental Recordings

All procedures in this study were performed in accordance with
the New York University School of Medicine Institutional Animal
Care and Use Committee and the NIH Guideline. Male Sprague-
Dawley rats were used in all experiments. The pain stimulus was
delivered by a blue (473 nm diode-pumped solid-state) laser with
varying laser intensities (50-250 mW) [5]. The inter-trial intervals
between consecutive laser stimulations were at least 1 min. Animals
freely explored in a plastic chamber of size 38×20×25 cm3. One
video camera (120 frame per second) was used to continuously
record the animal’s behavior. We used custom tetrode/stereotrode
arrays (a total of 32 channels) or two bundled silicon probes (64
channels) to record neural activity from the rat ACC or S1 areas,
or simultaneously). Using a Plexon (Dallas, TX) data acquisition
system, spikes were thresholded from high-passed (>300 Hz) local
field potentials (LFPs). The detected spikes were further sorted
using online spike-sorting software (Plexon). For the illustration
purpose, we validate our method using a few experimental recording
sessions.

The first recording session consists of 32 ACC units and 25
experimental trials of 150 mW laser stimulation. To assess trial-
by-trial variability, we estimate one model from one trial and then
apply 25 models to test all 25 trials, yielding a binary 25-by-25
matrix on detection results, with 1 and 0 representing TP and FN,
respectively (Fig. 3A). Furthermore, to emulate the online BMI
application, we use only 5 models trained from preceding 5 trials
and test the current trial. An improvement in TP (averaged across
25− 5 = 20 trials) is shown from single model detector to ECPDs
using the majority vote (Fig. 3B). Overall, we see a slight average
improvement. An example is shown in Fig. 4, in which 4 out of 5
models detect the actual change induced by the pain stimulus..

The second recording session consists of 26 ACC units with a
250 mW laser stimulation (during a conditioning experiment) [19].
Without going into experimental details, we use one experimental
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Fig. 3. (A) Detection results of the true positive (TP) matrix. Each entry
of the matrix denote the detection result from one model (row) applied to
one trial (column). Black/white color denotes TP/FN. Banded diagonal in
red denotes the results using models trained from preceding 5 trials. (B)
Comparison of averaged TP rate (averaged across 20 trials).

Fig. 4. (A) A trial example of spike count observations of C = 32 ACC
units. Time 0 denotes the onset of 150 mW laser stimulation. (B) Z-scores
derived from 6 PLDS models trained from the current (n, red) and preceding
trials (n−1, magenta; n−2, cyan; n−3, blue; n−4, green; n−5, black).
Vertical red and black lines denote the laser onset and paw withdrawal,
respectively. Horizontal dashed lines denote the ±1.65 threshold.

trial to illustrate the benefit of combining model-based and model-
free approaches in change-point detection when there are very few
Class-1 units. As shown in Fig. 5, the model-based method fails
to detect the change due to low number of Class-1 units (or high
certainty in the Z-score estimate). However, the model-free method
is able to detect the change. It is found that combining these two
methods helps improve the TP rate in this session.

Finally, the third and fourth recording sessions consist of simul-
taneously recorded ACC and S1 units of rats subject to double laser
simulations. The 50 mW laser stimulation is a negative control for
pain. As illustrated in one trial example of 50 mW stimulation
(Fig. 6), the ACC region detects two change points; in contrast,
the CCF from two ensembles avoids the FP. The result is also
robust to the choice of ρ. In another trial example of 250 mW laser
stimulation (Fig. 7), S1 detects the change, whereas ACC does not.
In contrast, the CCF detects the TP for a wide range of forgetting
factors. Overall, combining ACC and S1 can improve the detection
accuracy in many experimental trials.

IV. DISCUSSION AND CONCLUSION

In our proposed ECPDs, the individual change-point detectors are
estimated from different trials. Our previous BMI system consists
of two parallel CPU threads, one used for model estimation,
and another used for recursive filtering [10]. However, when the
numbers C and N are very large, the increasing computational
cost may induce undesirable time delay. To allocate more CPU
computing resources, we may consider using an optimized digital
signal processing (DSP) board dedicated to model estimation.

In addition to ensemble spike activity, LFPs may also reveal im-
portant information about pain signals, in both time and frequency
domains [22]. However, LFP signals are noisy due to potential
corruption of movement artifacts in freely behaving animals. Once
artifact rejection is achieved, we can first design an independent

Fig. 5. (A) A trial example of spike count observations of C = 26
ACC units. (B) Z-score curves from one PLDS model. Horizontal dashed
lines denote the ±1.65 threshold. (C) Cumulative statistic in the model-free
method. Horizontal dashed line shows the threshold 3.38.

Fig. 6. (A) A trial example of rat ACC (C = 10) and S1 (C = 7)
population spike count observations with a 50 mW laser stimulation at time
0. (B) Z-score curves derived from ACC (red) and S1 (blue). Horizontal
dashed lines denote the ±1.65 threshold. Vertical red denotes the laser onset.
(C) Z-scored cross-correlation function (CCF) from both areas based on
different values of forgetting factor ρ; m = n = 0.5.

Fig. 7. (A-C) Same as Fig. 6, but for 250 mW laser stimulation at time 0.

(supervised or unsupervised) change-point detector for pain sig-
nals; then we can adapt the strategy of ECPDs and integrate the
information from spikes and LFP for detecting pain signals.

In summary, we propose an unsupervised ensemble learning
framework for change-point detection. The general framework may
accommodate multiple trials, multiple brain regions and multiple
detection methods. In the future work, we will further investigate
optimal decision rules within this ensemble detection framework
and test on more experimental recordings.
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