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ABSTRACT

Cognitive neuroscience seeks to explain the organization of the
brain, but typically focuses on aspects that are shared across
people rather than those that vary across individuals. Here,
we present a new method for analyzing brain imaging data
that captures both shared and individual components of brain
activity. Inspired by the shared response model (SRM) and
the robust principal components analysis, the robust shared
response model (RSRM) aligns functional topographies across
humans while preserving a component of sparse, individual
activity. Experimental results on adult data showed that RSRM
performs as well as or better than SRM, while at the same time
capturing reliable markers of individual variability. In a test
case of participants with extreme variability, we found that
RSRM was able to improve the accuracy more than 60% over
SRM for the coding of infant fMRI data.

Index Terms— functional alignment, factor analysis, func-
tional magnetic resonance imaging, individual variability

1. INTRODUCTION

The goal of cognitive neuroscience has predominantly been
to characterize brain function at a population level. That is,
to draw inferences about how a stranger’s brain should work
based on a sample of other individuals. To draw such infer-
ences, brain imaging data (typically from functional magnetic
resonance imaging, fMRI) are averaged across the sample.
This is traditionally done with a general linear model that
treats individual variation as a random effect. More recent
approaches, such as the shared response model (SRM) [1] and
others [2, 3, 4, 5, 6], characterize population-level activity by
aligning functional topographies and identifying shared com-
ponents in the temporal dynamics of activity across the brain
to a common stimulus, such as a movie or story.

Although such approaches are incredibly useful, there are
also situations where the individual variation they obscure is
the target of study. For example, in a clinical context, each
patient has a distinct life history, genetic makeup, and constel-
lation of illnesses or disorders. Thus, individual variation may
be crucial when using brain imaging for personalized treat-
ment or diagnosis. Even in the healthy brain, individuals vary
considerably in different behavioral abilities, from memory
capacity, to reading, and to math problem solving.

Development is another domain where such variation is
salient. Over the course of development, variation in functional
brain activity could arise both within the same individual at
different ages (as they develop new abilities) and across indi-
viduals at a given age (because their developmental trajectories
are misaligned). At the same time, there are also shared compo-
nents within individuals over development (because past stages
serve as the baseline for future stages) and across individuals
of a specific age (what tends to happen at that age).

Here, we describe a new method for extracting such indi-
vidual variation. The method separates shared and individual
components of brain activity. Unlike standard functional align-
ment methods, the individual components are distinguished
from noise, which is estimated separately. Specifically, we
combine SRM with the idea behind robust principal compo-
nent analysis [7, 8], and thus we refer to it as the robust shared
response model (RSRM). In what follows, we first define the
model and derive an algorithm to estimate it. Next, we test its
ability to recover signals on synthetic data. Then, we evaluate
its performance with both adult and (rare) infant fMRI data.
RSRM exhibits higher gains, in particular, when analyzing
infant data that have greater individual variation.

2. BACKGROUND

Let
{
X(i)

}N
i=1

be a set of N fMRI scans, where X(i) is
the measured brain activity for subject i. The data matrix
X(i) ∈ Rvi×t is comprised of t vectorized volumes (TR)
in columns of vi voxels each. The Shared Response Model
(SRM) [1] suggests that there is a k-dimensional shared and
latent subspace across subjects that can represent data as
X(i) = W(i)R + E(i) for i = 1 . . . N , where R ∈ Rk×t
is the k-dimensional shared response, W(i) ∈ Rvi×k is the
subject i mapping from shared space to a subject’s voxel
space, and E(i) ∈ Rvi×t is an additive noise term for the
respective subject. The model assumes the mappings W(i)

to be in the Stiefel manifold Vvi,k domain, i.e., orthogonal
W(i)TW(i) = I. In [1], the authors propose a determinis-
tic and a probabilistic version of the model, and approximate
them using a block-coordinate descent approach [9] and an
expectation-maximization scheme [10], respectively.

This model has been shown to have several benefits and
practical extensions: addition of new data and subjects [1], in-
creased prediction accuracy [1, 11], computational advantages
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[12], and semi-supervision [13]. SRM has been designed to
look for shared representations between people; however, if
the participants being studied have substantial differences then
this method may not be optimal.

3. THE ROBUST SHARED RESPONSE MODEL

To improve SRM, we have modified the model to capture
individual information. This robust shared response model
(RSRM) introduces a new component that captures outlying
information. This component reflects variability in individual
participants that is not accounted for by the shared representa-
tion. In RSRM, each subject’s data is described by a summa-
tion of the shared response, this individual term, and a residual
noise component as follows:

X(i) = W(i)R+ S(i) +E(i) ∀i = 1 . . . N, (1)

where S(i) ∈ Rvi×t is the individual component for subject i.
Similar to SRM, we constrain the mappings W(i) of RSRM
to the Stiefel manifold Vvi,k. Ideally, the S(i) matrix should
contain structured information that is not represented by the
shared component. We further assume that individual data is
infrequent, so these matrices are sparse. In that sense, RSRM
follows the robust principal component analysis and related ap-
proaches [7, 8]. When stacking the subjects, RSRM resembles
these models. However, the additional constraints requiring
orthogonality of each mapping W(i), makes RSRM a model
that yields a different solution.

3.1. Estimating the model
We propose to estimate the W(i), S(i), and R components
in Eq. (1) by solving an optimization problem. We use `1-
regularization to obtain sparse S(i) components:

min
S(i),W(i),R

∑N
i=1

1
2‖X

(i) −W(i)R− S(i)‖2F + λi‖S(i)‖1 (2)

s.t. W(i)TW(i) = I ∀i = 1 . . . N,

where λi > 0 is a regularization parameter that balances be-
tween the fidelity to the data and the sparsity of S(i) for each
subject. The `1-norm term is defined as ‖A‖1 =

∑
ij |Aij |.

The value of the regularization parameter determines the
amount of data that is considered individual and shared. Thus,
it is worth noting that when λi = λ for all i, and λ → ∞,
Problem (2) is equivalent to the deterministic problem of
SRM, as the sparse matrices S(i) → 0. On the other hand,
when λ → 0 the optimal solution to the problem is given by
S(i) → X(i) and R→ 0.

3.2. Computing the solution
The optimization task in Problem (2) is non-convex. Therefore,
we approximate a solution by applying the Block Coordinate
Descent approach [9]. This approach partitions the variables
into blocks, and iteratively optimizes each block while fixing
the values of the variables in other blocks. In the RSRM case,
we define a block for each of the matrices W(i), S(i), and R.

Despite the non-convexity of Problem (2), the subproblems
for each variable are convex with well defined solutions.

The shared response term is computed by fixing the values
of all variables while minimizing R. The constrained subprob-
lem that depends on R, aims to minimize the sum of Frobenius
norm terms alone. This problem has a closed-form solution,
and an update to the shared response is given by

R =
1

N

N∑
i=1

W(i)T
(
X(i) − S(i)

)
. (3)

Intuitively, Eq. (3) suggests that the updated shared response
is obtained as the average of all the subjects’ projected data
after the individual data are removed.

Computing each of the individual terms S(i) requires the
solution of an `1-regularized minimization task. Each subject’s
individual term S(i) in the summation in Problem (2) is decou-
pled from the others. Therefore, the subproblem to solve for
subject i has the form minS(i)

1
2‖D

(i) − S(i)‖2F + λ‖S(i)‖1,
where D(i) = X(i) −W(i)R is the individual residual. All
the elements in the matrix S(i) are decoupled, yielding a one-
dimensional problem for each element of S(i). Its solution
is obtained by applying the soft-thresholding [14] operator
Sλi (d) on each element d of the matrix D(i), where the oper-
ator is defined as

s = Sλi
(d) =

{
(|d| − λi) sign (d) , if |d| > λi

0 otherwise.
(4)

Therefore, a single application of the soft-shrinkage operator
solves the convex optimization problem for each S(i).

Next, we update the mappings W(i) for each subject.
The mappings W(i) are also decoupled in the summation
in Problem (2), and thus, can be computed independently
per subject. Fixing the shared response, and individual
terms yields an optimization problem with penalty function
‖X(i) − S(i) −W(i)R‖2F on the Steifel manifold domain for
W(i). Such a minimization task is known as a Procrustes [15]
problem and has the closed-form solution

W(i) = U(i)V(i)T , (5)

where U(i) and V(i) are the left and right singular vectors of
the matrix

(
X(i) − S(i)

)
RT .

The block coordinate descent approach considered here
computes a solution to Problem (2) applying Eq. (3), (4), and
(5) iteratively. The method initializes the mappings with a
random orthogonal matrix, and the individual terms to the
zero matrix. With these two terms set, the shared response
can be updated first without the need for an initial value. The
runtime complexity of the method is the aggregation of each
block update. Governed by matrix multiplies, the updates of R
and all S(i) have complexity O (Nkvit). The mappings W(i)

updates require additional matrix multiplies and SVD com-
putations. The former has a complexity O (Nkvit) and the
latter O

(
Nvik

2
)
. Therefore, the overall runtime complexity

of RSRM is O (Nkvit), which is the same of SRM.
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3.3. Adding new data
RSRM is designed to deal with individual information better
than SRM, while preserving many of its properties. A de-
noised version of the data can be obtained from the shared
component W(i)R. RSRM can generalize to new data from
the same subject, or even to new subjects. Assuming that the
model generalizes to new data X̃(i) for the same subjects, the
mappings W(i) should be the same. To compute the shared
response R̃ and the individual terms S̃(i) for the new data,
we need to minimize ‖X̃(i) −W(i)R̃− S̃(i)‖2F + λi‖S̃(i)‖1,
and obtain S̃(i) and R̃. A solution is computed by iteratively
solving Eq. (3) and (4) with the new data.

Alternatively, we can introduce a new subject to the model.
For this purpose we need to estimate a mapping W(new)

for the new subject, and also the respective individual term
S(new). We use the shared response R as a template and
minimize the function ‖X(new) − S(new) −W(new)R‖2F +
λnew‖S(new)‖1. The terms W(new) and S(new) are computed
solving iteratively for each matrix with Eq. (5) and (4).

4. EXPERIMENTAL RESULTS

In what follows, we evaluate RSRM on synthetic and real data.
The experiments with real fMRI data include adult and devel-
oping populations. We use the Forrest dataset that includes
scans of 18 subjects listening to a 2-hour auditory version of
the “Forrest Gump” movie [16]. Each subject contains data
from the planum temporale region [17] comprised of 2600
voxels and 3599 TRs. The audiobook dataset includes 40 sub-
jects, who listened to a 12 minute (449 TRs) narration of the
“Pretty Mouth and Green My Eyes” story from J.D. Salinger
[18]. The dataset is divided in two equal-sized groups of 20
subjects. Each group was given a prior context favoring one
of two possible interpretations to the story. We use the default
mode network ROI [19] comprised of 2500 voxels.

As a new application of RSRM, we use highly variable data
acquired from developmental subjects. We collected fMRI
data while 6 infant or toddler participants watched a shortened
version of a “Mickey’s Birthday Party” film for 142 seconds
with 4s of burn out (73 TRs). This stimulus was repeated twice
for each participant. The age of the subjects ranged from 8 to
36 months: 8, 17, 21, 23, 23, 26, 36. One of the subjects was
scanned at 17 and 23 months of age. We define an occipital
lobe ROI with an average of 6800 voxels per infant. We used
Python to implement the code, and it is released in BrainIAK
(http://brainiak.org).

4.1. Synthetic data
We begin by evaluating the ability of the algorithm to recover
synthetic signals drawn from the model in (1). We create the
shared response R as a three-dimensional curve with 200 TRs
long. Then, we generate synthetic signals for 5 subjects by
drawing a random projection, W(i) ∈ R30×3, and projecting
the shared response to a 30-dimensional voxel space. Next, the
entries of the individual terms S(i) take a uniformly distributed
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Fig. 1: Examples of Ground truth (green) and reconstructed
shared response for synthetic data for RSRM (red) and SRM
(blue), when SNR is (a) 5dB, (b) 10dB, and (c) 20dB (λ=1.4,
0.9, and 0.35).

value in the range [−4, 4] with probability ρ = 0.2, and a value
0 with probability 1 − ρ. Eventually, we add the individual
terms and the white Gaussian noise N

(
0, σ2

n

)
to each subject.

The noise level σ2
n is chosen following a desired signal-to-

noise ratio (SNR). We compare the reconstruction of shared
response (curve) with RSRM and SRM for various values of
SNR. We set k = 3 shared features for both algorithms, and
set λ to obtain approximately the same number of non-zeros
in the recovered individual terms. We note that the resulting
shared response is recovered up to an orthogonal rotation Q
of the space [1]. For the sake of comparison and visualization,
we compute and apply Q. Figure 1 depicts the improvement
that RSRM achieves over SRM for this model.

4.2. Time segment matching and group matching on
adult participants

Next, we repeat experiments from previous work [4, 1]. In
these experiments, we test whether RSRM can identify indi-
vidual information in the data and in turn better estimate the
shared response, hence outperforming SRM. First, we focus
on the time segment matching experiment utilizing the Forrest
dataset. In this experiment, we test whether it is possible to lo-
cate a window of 18 seconds (9 TRs) from a held-out subject’s
data by training a model on the data of the other subjects. The
data of each subject is divided into two halves. One half is used
for training the functional alignment methods and the other is
used to assess performance. Once the model is approximated,
we compute the components for the subject that was left out.
Next, we transform the other half of the left-out subject’s data
and look for the highest correlated segment in the averaged
shared responses of the other half of the other subjects’ data.
A match is achieved when the segment is correctly located in
the average shared response. Nearby segments are excluded
from this computation. We use two-fold cross validation with
the halves of the data and leave one out with the subjects.

The results from RSRM are presented in Figure 2 and show
a small improvement (about 1.2% for the best performance)
over those of SRM. For RSRM we tested several values of λ,
and found consistently good results for λ = 0.05 across the
different k values. The small value of λ and the very small
improvement in predictive performance, suggests that there
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Fig. 2: Time segment matching results with Forrest dataset.
Accuracy performance is presented for several values of fea-
tures k for RSRM and SRM. Error bars: ±1 standard error.
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Fig. 3: Group matching results with audiobook dataset. Accu-
racy performance is presented for several values of k1 inter-
group features and k2 within-group features for RSRM and
SRM. Error bars: ±1 standard error.

is minimal individual information in the data. This may be
because the preprocessing of the data in [1] included a voxel
selection procedure that selects only task revelant voxels. Even
so, RSRM can outperform SRM on these data.

RSRM was also tested with the group matching experiment
of [1]. We use the audiobook dataset to classify the context of
the story to which these participants were exposed. This exper-
iment allows us to evaluate whether data in the individual term
can be used to differentiate between groups. We train an SVM
classifier on the voxel space data of a set of training subjects
while holding-out a subject from each group for testing the
classifier. To test functional alignment methods, we first train
the algorithms using k1 features with all the subjects, conse-
quently, we obtain a shared response and a mapping for each
subject. Next, we remove the shared response from all subjects,
i.e., Y(i) = X(i) −W(i)R. Then, we train two instances of
the method with k2 features on Y(i)’s, using within-group sub-
jects in the training set for each group. We then train the SVM
classifier with the shared response projected into the voxel
space of each subject, i.e., W(i)

g Rg, where group g ∈ {1, 2}.
Testing is performed on the held-out subjects’ data.

Figure 3 shows the classification accuracy for both SRM
and RSRM. Across most values of k1 and k2 RSRM outper-
forms SRM. The best value for λ was selected within the range
[0.1, 2.0]. The optimal values of k1 and k2 are different be-
tween SRM and RSRM. The reason for this is that higher k1
values allow RSRM to learn more information that is shared
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Fig. 4: Time segment matching results with developmental
dataset. Accuracy performance is presented for several values
of features k for RSRM and SRM. Error bars: ±1 standard
error.

while lowering the chance of being influenced by individual
data. The results show that the individual information S(i) can
be used to create a shared representation within groups that
can discriminate to which contexts participants were exposed.

4.3. Time segment matching on developmental data
In this experiment, we perform time segment matching on the
developmental data. Following the design of the data collec-
tion, we use one repetition of the movie (73 TRs) for training
and the other for testing (73 TRs). We locate a window of 9
TRs from a held-out subject on the average shared response
of the training group. We apply leave-one-out cross valida-
tion on subjects and two-fold cross-validation on each movie
repetition.

The results of this experiment are presented in Figure 4 for
SRM and RSRM with different values of k. For all values of
k, the best value for λ ∈ [0.01, 3.0] is selected for RSRM. The
results of the experiment show that RSRM outperforms SRM
for values of k > 3, improving about 66% over SRM’s best
accuracy with k = 15. When the number of factors k increases,
SRM does not improve performance, whereas RSRM is able
to maintain or improve the accuracy. RSRM is able to translate
part of the variability into the individual terms, allowing for a
better shared representation across subjects.

5. CONCLUSIONS
Functional alignment methods have shown their usefulness in
aggregating and analyzing fMRI data. However, the perfor-
mance of these methods can be affected by individual vari-
ability. In this work, we presented the robust shared response
model that captures a sparse individual information term while
simultaneously improving the shared response across subjects.
The separation of individual components helped obtain im-
proved mappings as shown in the time segment matching
experiment with adult data. The group matching experiment
showed that the individual term, which was different across
groups, can predict which context participants were exposed
to. In infant fMRI data, where the variability of brain function-
ality across age and subjects is higher than adults, we showed
that RSRM captures shared representations better than SRM,
boosting predictive power.
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