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ABSTRACT

Prostate segmentation in Magnetic Resonance (MR) Images
is a significant yet challenging task for prostate cancer treat-
ment. Most of the existing works attempted to design a global
classifier for all MR images, which neglect the discrepancy
of images across different patients. To this end, we propose
a novel transfer approach for prostate segmentation in MR
images. Firstly, an image-specific classifier is built for each
training image. Secondly, a pair of dictionaries and a map-
ping matrix are jointly obtained by a novel Semi-Coupled
Dictionary Transfer Learning (SCDTL). Finally, the classi-
fiers on the source domain could be selectively transferred to
the target domain (i.e. testing images) by the dictionaries and
the mapping matrix. The evaluation demonstrates that our
approach has a competitive performance compared with the
state-of-the-art transfer learning methods. Moreover, the pro-
posed transfer approach outperforms the conventional deep
neural network based method.

Index Terms— Prostate Segmentation, Image-Specific
Transfer Approach, Semi-Coupled Dictionary Transfer Learn-
ing.

1. INTRODUCTION

Nowadays, prostate cancer is considered as one of the most
leading diseases for cancer-related death for males over the
world. According to the report from the National Cancer
Institute, in 2017 about 161,360 new cases are estimated and
26,730 deaths are caused by prostate cancer in the US 1. In
order to cure prostate cancer, the cancer tissues should be
precisely killed by high-energy X-rays from different direc-
tions in clinical practice. Therefore, prostate segmentation
in prostate MR image for accurate localization is clinically
significant. However, prostate segmentation by asking the
physician to provide the manual delineation is very time-
consuming and laborious. Thus, in recent years, there are
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increasing demands to develop computer-aided segmentation
methods for localizing the prostate region in MR images.

Recently, many efforts for developing automatic or semi-
automatic methods for prostate segmentation in MR images
have been presented [1–4]. Previous automatic prostate seg-
mentation methods could be roughly classified into non-
learning methods (e.g. multi-atlas methods [5], the de-
formable methods [4]) and learning-based methods (e.g. us-
ing marginal space learning [6], feature learning [7] and deep
convolution neural networks [1, 3, 8]). In particular, learning-
based methods from a data-driven perspective have obtained
more attention in prostate segmentation.

Most existing methods focus on learning one unique glob-
al model on all training MR images. However, the prostate
MR images of different patients are largely different in ap-
pearance, shape and size, etc., which lead to a large data
distribution discrepancy. Even for a same patient, the same
prostate region may appear very different in different treat-
ment days, due to irregular, unpredictable prostate motion
and shape distortion, etc [7]. These conventional learning
paradigms, which normally train a global model by collecting
all the samples from the training images, might suffer from
the difference in data distributions across different patients
(domains). This might also pose a major obstacle in adapting
predictive model for the target task [9]. Therefore, one global
model cannot perform well on each MR image. Basically, the
goal of transfer learning is to eliminate or relieve the data dis-
tribution discrepancy between different domains [10–12]. In
this case, the model learned on the source domain could per-
form well on the target domain. Thus, this could be naturally
borrowed to tackle the data distribution discrepancy issue in
prostate segmentation.

2. OUR METHOD

In this paper, we propose a novel image-specific transfer mod-
el for prostate segmentation in MR images. The framework
of the proposed approach is illustrated in Fig. 1. Firstly, an in-
dividual image-specific classifier is trained for each training
MR image. Secondly, the proposed Semi-Coupled Dictionary
Transfer Learning (SCDTL) algorithm is used to learn a pair
of dictionaries and a mapping matrix. By the dictionaries and
the mapping matrix, the correspondence between image fea-
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Fig. 1. The framework of the proposed method for prostate segmentation in MR images.

ture space and classifier weight space could be established.
Thus, the classifier on source domain could be transferred to
target domain. Finally, we perform the result refinement to
obtain the final results.

Image Preprocessing. Since our prostate segmentation
method is performed on patches of MR images [7, 8, 13], we
extract the patches from each MR image on the source do-
main. For each patch, its label is assigned according to the
label of the center voxel. Typically, if the center voxel is in
prostate region, the label of this patch is set to 1 (positive),
otherwise, it will be set to −1 (negative). The size of each
patch is 32×32. Considering the fact that non-prostate region
is much larger than prostate region, we employ the sampling
method [8] to roughly get equal amounts of positive and neg-
ative patches. Specifically, about 300 ∼ 400 training patch-
es are sampled in each training slice according to the size of
prostate region, thus about 6×103 ∼ 1.6×104 training patch-
es are sampled for each patient.

Image-Specific SVM Learning. Given the training im-
age set Xs = {xi}Ni=1, where xi ∈ Rm represents the i-th
image, each MR image is treated as a single domain in this
paper. Because of the data distribution discrepancy, each im-
age (each domain) should have a specific classifier.

Inspired by the existing learning-based methods [7, 14],
we attempt to judge the location of each voxel in MR image
by the label of patch. Based on a classifier F , if a patch is
predicted to be positive, the center voxel of this patch is in the
prostate region. Otherwise, it will not belong to the prostate
region.

Considering that the linear SVM [15] is always with the
good interpretability [16], we model the image-specific SVM
for the i-th image as follows:

min
wi,b,ξj

1

2
‖wi‖2 + C

h∑
j=1

ξj ,

s.t. yj(wi
Tpij + b) ≥ 1− ξj ,

ξj ≥ 0, j = 1, 2, · · · , h.

(1)

where C ∈ R is a regularization parameter, and ξj ∈ R de-
notes the slack variable, pij is the feature vector of the j-th
patch of the i-th image, respectively.

Note that, by solving Eq. (1), we could obtain the specific
classifier weight vector wi ∈ Rl for the i-th image (i.e. xi

and its SVM weight vector wi is one to one correspondence).
Basically, similar images should have similar directions of the
weight vectors, thus, the similarity of different images could
be used to guide to transfer the image-specific classifiers from
multiple source domains to the target domain.

SCDTL. Our goal is to infer the weight vector for each
image on the target domain according to its image feature,
which can be realized by learning an intrinsic relationship be-
tween image feature space and classifier weight space. In-
spired by [16–18], in this paper, the special relationship be-
tween source and target domain is constructed by dictionary
learning. Our SCDTL aims to learn a pair of dictionaries in
feature space and classifier space, as well as a mapping matrix
between the two aforementioned dictionaries. In particular,
the two dictionaries could represent the intrinsic structures of
the two spaces, and also the mapping matrix characterizes the
relationship between them. Thus, an image-specific classifi-
cation model on the target domain can be obtained by these
dictionaries and the mapping matrix.

We introduce X = [x1,x2, · · · ,xN ] ∈ Rm×N to rep-
resent the training feature matrix with each column denoting a
feature vector of one training image. W = [w1,w2, · · · ,wN ] ∈
Rl×N indicates the matrix of classifier weight, where a weight
vector in the W corresponds to an image. Dx ∈ Rm×k and
Dw ∈ Rl×k are feature dictionary and classifier weight dic-
tionary, respectively. M ∈ Rk×k is the mapping matrix. k
denotes the dictionary size.

Following the assumption that the dictionaries are over-
complete, many existing methods [17, 18] impose `1-norm
regularization for coding coefficients to choose a few atoms
from the learned dictionary to describe a sample. In addi-
tion, since feature dimension is usually much larger than the
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number of images, Frobenius norm regularization is adopted
to capture the correlation structure of data with large vari-
ations [16]. However, the aforementioned methods assume
that feature space and classifier weight space have the same
dimensionality. In prostate segmentation, the feature dimen-
sionality of the whole image is much larger than the number
of images, while the dimensionality of classifier weight based
on patches is smaller than the number of image. It is not
suitable for all coding coefficients to apply a same constraint.
Thus, our proposed SCDTL is mathematically formulated as
follows:

min
{Dx,Dw,M}

‖X−DxΛx‖2F + ‖W −DwΛw‖2F+

γ‖Λw −MΛx‖2F + λ‖Λx‖2F + λ‖Λw‖1
+ λ‖M‖2F ,

s.t. ∀i, ‖dx,i‖ ≤ 1, ‖dw,i‖ ≤ 1.

(2)

where Λx ∈ Rk×N and Λw ∈ Rk×N denote the coding coef-
ficients of feature and weight dictionaries, respectively. ‖ · ‖F
is the Frobenius norm to obtain the correlation structure of
data with large variations, and ‖ · ‖1 is `1-norm to impose the
coding coefficients to be sparse. γ and λ are defined as two
regularization parameters to balance the terms in Eq. (2), re-
spectively. dx,i ∈ Rm and dw,i ∈ Rl denote the atoms of Dx

and Dw, respectively.
Note that Eq. (2) is not jointly convex to Dx,Dw,M.

However, the objective function w.r.t. only one variable is
a convex function. Therefore, the problem can be solved by
the alternating optimization strategy.

• Update Λx: After parameter initialization, M, Dx,
Dw, M and Λw are fixed to calculate the coding co-
efficients Λx as follows:

min
{Λx}

‖X−DxΛx‖2F+γ‖Λw−MΛx‖2F+λ‖Λx‖2F . (3)

Note that Eq. (3) could be solved by its closed-form
solution, as:

Λx=(DT
xDx+γMTM+λI)−1(DT

xX+γMTΛw).
(4)

• Update Λw: After solving Eq. (3), we fix Dx, Dw, M
and Λx to calculate the sparse coding coefficients Λw

as follows:

min
{Λw}

‖W −DwΛw‖2F + γ‖MΛx −Λw‖2F + λ‖Λw‖1.

(5)
Eq. (5) is a multi-task LASSO problem, thus we perfor-
m LARS [19] for its solution.

• Update Dx and Dw: We fix Λx, Λw and M to opti-
mize the dictionary pair Dx and Dw, which could be
formulated as:

min
{Dx,Dw}

‖X−DxΛx‖2F + ‖W −DwΛw‖2F

s.t. ∀i, ‖dx,i‖ ≤ 1, ‖dw,i‖ ≤ 1.
(6)

Algorithm 1 The Optimization of SCDTL
Input: image matrix X, classifier weight matrix W, param-

eters γ, λ.
Output: feature dictionary Dx, weight dictionary Dw and

mapping matrix M.
Initialize: Dx, Dw, M, Λx and Λw.
Repeat:
1: Fix Dx, Dw, M, Λw, update Λx by Eq. (4).
2: Fix Dx, Dw, M, Λx, update Λw by Eq. (5).
3: Fix Λx, Λw, M, update Dx, Dw by Eq. (6).
4: Fix Dx, Dw, Λx, Λw, update M by Eq. (8).
Until: convergency.

Eq. (6) is a quadratically constrained quadratic program
problem (QCQP). Inspired by [20], we adopt a column
by column update strategy to solve Eq. (6).

• Update M: Finally, with the coding coefficients and
dictionaries fixed, we update the mapping matrix M
as:

min
{M}
‖Λw −MΛx‖2F +

λ

γ
‖M‖2F . (7)

Similar to Eq. (3), Eq. (7) can also be solved by a
closed-form solution, as:

M = ΛwΛT
x (ΛxΛ

T
x +

λ

γ
I)−1. (8)

The whole optimization algorithm for solving SCDTL is sum-
marized in Algorithm 1.

Transferring Classifiers to Testing Images. With the
obtained dictionary pair Dx, Dw and the mapping matrix M,
given a prostate MR image xt on the target domain, its cor-
responding classifier weight vector wt can be obtained by the
following steps.

• Step 1: The coding coefficient αxt ∈ Rk of xt can be
obtained as:

min
{αxt}

‖xt −Dxαxt
‖2F + λ‖ αxt

‖2F . (9)

The optimal solution of Eq. (9) is calculated as:

αxt
= (DT

xDx + λI)−1DT
xxt. (10)

After αxt
is obtained, the coding vector αwt

∈ Rk of
wt is derived by:

αwt = Mαxt . (11)

• Step 2: The classifier weight vector wt of xt can be
inferred:

wt = Dwαwt
. (12)
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• Step 3: The specific weight vector wt of the MR image
xt could be used to predict the labels of all the patches
from testing image xt. Through Dx, Dw and M, the
classifier of each MR image on the source domain is
selectively transferred to the target domain.

To obtain the binary segmentation results, we employ the
level-set [21] model to refine the segmentation results.

3. EXPERIMENT

In the experiment, 3D series prostate MR images from 22 d-
ifferent patients are employed to validate our method. Each
patient contains 20 ∼ 40 2D MR image slices. Meanwhile,
all MR images have already been manually delineated by the
physicians which can be treated as ground-truth. In our exper-
iment, we perform 2-fold cross validation for segmenting the
prostate MR images of the 22 patients. Specifically, in each
cross validation, the prostate MR images from 11 patients
are used as source domains and the rest of the MR images
are considered as target domains. The two criteria including
average Dice similarity coefficient (DSC) which is the most
popular metric in tissue segmentation [1, 2, 7] and centroid
distance (CD) along from two directions are employed as the
evaluation metrics.

In the experiment, we compared the proposed method
with several the state-of-the-art transfer learning paradigms
including Laplacian SVM (LapSVM) [12], Transfer Com-
ponent Analysis (TCA) [10] and Subspace Alignment (SA)
[11]. These 3 methods obtaining competitive performance
in different fields are designed to deal with transfer problem
from different views including feature, subspace and mod-
el, respectively. Specifically, since the time complexity of
LapSVM, TCA and SA is more than quadratic with the num-
ber of samples, we randomly sampled 10000 patches from
the source domains as labeled data and all the patches from
one testing image as unlabeled data to obtain LapSVM, TCA-
SVM and SA-SVM for this testing MR image on the target
domain. For all these methods, we adopt level-set model [21]
to refine the results. Also, linear kernel, deep features are
used for all the methods.

In addition, our method is compared with a global deep
model, LeNet [22]. The patches sampled from all the source
domains (about 6.6 × 104 ∼ 1.7 × 105) are utilized to train
the global LeNet. Specifically, we use the global LeNet and
VGG16 model [23] trained on the ImageNet2 as patch feature
extractor and whole image feature extractor, respectively. Al-
so, we set the dictionary size to 150.

The results of all the experiments are reported in Table 1.
Fig. 2 shows the typical results of different methods. From
Table 1, we could observe: (1) Due to the time complexity of
LapSVM, TCA-SVM and SA-SVM, these transfer methods
could not fully use all the information on the source domain.
Moreover, they cannot selectively transfer useful knowledge
from source to target domain. This flaw leads to the negative
transfer. Thus, the global LeNet outperforms these transfer

2http://image-net.org/index

Table 1. Evaluation results of all the methods. Note that
highlighted values represent the best results.

Method Dice CD-x(mm) CD-y(mm)
LapSVM [12] 0.80 (0.05) 1.10 (0.54) 1.12 (0.81)

TCA-SVM [10] 0.79 (0.04) 1.13 (0.58) 1.18 (1.07)
SA-SVM [11] 0.71 (0.10) 3.79 (1.83) 2.00 (0.75)

LeNet [22] 0.81 (0.02) 1.08 (0.62) 1.06 (0.81)
SCDTL 0.83 (0.02) 0.73 (0.46) 1.06 (0.75)

methods. (2) Although deep model could relieve the discrep-
ancy between different domains, it cannot totally eliminate
the issue. However, our proposed method leverages the mod-
el information of similar image to largely eliminate the data
distribution discrepancy between source and target domain-
s. Meanwhile, with the deep feature, the performance of our
method is better than the specific LeNet on the target domain.
(3) What’s more, our method could selectively transfer the
knowledge from many different source domains, which effec-
tively avoids the possible negative transfer. These aforemen-
tioned analyses support that the performance of SCDTL is
better than the mentioned state-of-the-art transfer paradigms.

(a) LapSVM (b) TCA (c) SA (d) LeNet (e) SCDTL

Fig. 2. The visualized results of the proposed method and
baselines. Note that the red line represents groundtruth and
the green line denotes segmentation result.

4. CONCLUSION

In this paper, inspired by the observation that prostate regions
in different MR images show their specific characteristic, we
propose a novel image-specific transfer approach for prostate
segmentation. By our proposed SCDTL, a pair of dictionaries
for image feature space and classifier weight space, and the
mapping matrix between them are obtained. According to the
obtained dictionaries and the mapping matrix, the classifiers
of images on the source domain can be selectively transferred
to the target domain with less negative transfer. Experimental
results show the proposed method performs better than sever-
al state-of-the-art transfer methods. Furthermore, our method
is more effective than the global LeNet model.
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