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ABSTRACT

This work proposes a volumetric data restoration method, especially
for data acquired through an optical coherence tomography (OCT)
device. OCT is a technique for acquiring a tomographic image of
a specimen object in a few µm scale by using a near infrared laser.
The authors have been trying dynamic observation of epithelium in
cochlear of the inner ear. Currently, there is a problem to remove the
influence of the measurement process as well as noise due to image
sensor sensitivity. Therefore, in this work, on the assumption that
specimen objects follow some sort of signal generation model, an
OCT volumetric data restoration method is proposed. The proposed
technique adopts the primal-dual plug-and-play (PDPnP) method,
where the generation model is represented by a sparsity-aware reg-
ularization term explicitly or implicitly. The significance of the pro-
posed method is verified by simulation on artificial data, followed by
an experiment with actual observation data.

Index Terms— Primal-dual splitting method, BM4D, volumet-
ric data, sparse modeling, synthesis dictionary, MS en-face OCT

1. INTRODUCTION

The sensory epithelium in cochlea of a living animal has nonlinear-
ity which strongly amplifies vibration as the input sound is smaller.
Such reactions are not seen in dead animals. Understanding the
mechanism of the cochlea is needed from the aspect of science and
medicine. In order to measure vibration of sensory epithelium in
vivo, we have been developing a novel tomographic imaging device
using OCT [1]. An OCT is a tomographic technique with a spatial
resolution of a few µm using a near infrared laser. It is adopted to
measure layered materials such as bio-tissues and an indispensable
measurement technique for fundus examination in ophthalmology
[2]. However, conventional OCT techniques, such as Doppler spec-
tral domain (SD) OCT [3–6], acquire layered structure in the depth
direction (Z direction) of one point, and needs two-dimensional (2-
D) scanning in X and Y directions to obtain volumetric data. There-
fore, it is not suitable for temporal dynamic tomography. Our de-
veloping new device is a multi-frequency scanning (MS) full-field
(en-face) OCT type that instantly acquires 2-D information in the X
and Y directions and performs only Z direction scanning [7]. It is
possible to acquire tomographic data in a shorter time than conven-
tional one. On the other hand, since the light is broadened by the
interference microscope, the image is weaker than that of the con-
ventional type and it is susceptible to noise.

∗ Advanced Research and Development Programs for Medical Innova-
tion, AMED-CREST

This work was supported by AMED-CREST and JSPS KAKENHI Grant
Number JP16H03164.

A target source u is observed through a measurement process P
which consists of a coherence, i.e., local fluctuate function. There-
fore, in order to estimate the tomographic data u from observed data,
i.e., interference image, v, it is necessary to remove the local fluc-
tuation as well as noise. This problem can be reduced to a signal
restoration problem. In the article [8], we proposed a denoising
method for OCT data with the iterative hard-thresholding algorithm.
Although the significance of the denoising performance was veri-
fied, the measurement process was not taken into account. In [9], the
authors propose a super-resolution technique, i.e., simultaneous in-
terpolation and denoising, for retina SD-OCT in order to shorten the
acquisition time. High resolution volumetric data is restored from in-
complete OCT data by using OMP and learned dictionary. As well,
article [10] proposes a speckle denoising method for retina SD-OCT.
It adopts the low rank matrix decomposition for patches. Both of [9]
and [10], however, have no mention on reversing the measurement
process.

Removal of noise and measurement process is often formulated
as a 1-norm regularized least squares problem, which can be solved
by the iterative soft-thresholding algorithm (ISTA) [11–14]. ISTA
guarantees to converge to a point in the exact solution set. The prob-
lem setting, however, is limited and is difficult to be modified. For
example, since OCT source data u is a spatial distribution of re-
flectance of an object, the range of the value is limited to range from
−1 to 1. In this case, a restoration algorithm that can incorporate
hard constraints is preferable. The alternating direction method of
multipliers (ADMM) works well for constrained optimization prob-
lems [15,16] and its application to compressive video sensing is dis-
cussed in [17]. ADMM, however, requires an inverse matrix opera-
tion and has difficulty in the application to high dimensional data.

In this work, we propose to apply PDPnP method [18] to solve
the OCT restoration problem. PDPnP is based on primal-dual split-
ting (PDS) algorithm [19, 20], which can deal with an optimization
problem that ADMM can handle without inverse matrix operation.
In addition, implicit regularization term is acceptable by plugging a
state-of-the-art regularized Gaussian denoiser such as BM4D [21].

2. OVERVIEW OF MS EN-FACE OCT

In this section, we overview the device configuration of MS en-face
OCT. The observation model is also discussed. Note here that we
deal with only snapshot of dynamic volumetric data at a certain time,
and will leave discussions on dynamic variation as a future work.

2.1. Device configuration

Fig. 1 shows the configuration of MS en-face OCT device. The spec-
trum of the broadband super-luminescent diode (SLD) light source
is extracted out in a comb shape by the Fabry-Perot resonator, and
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Fig. 1. MS en-face OCT device configuration

a multi-wavelength optical comb is generated. The position of the
interference peak is scanned in the Z direction by controlling the
frequency interval of the spectrum comb with a piezo actuator.

The optical comb is divided into a reference and sample beam
by the beam splitter. The field of view is enlarged by the objective
lenses, and the reflected lights are formed on the CMOS sensor. In-
terference between the reference and sample beam is acquired and
rendered by image processing.

2.2. Observation model

MS en-face OCT successively acquires tomographic images perpen-
dicular to the optical axis (Z direction) by changing the depth po-
sition. By aligning these images, observation volumetric data of an
object such as bio-tissue is obtained. We let a discrete model of OCT
observation data {r[n]}n be

r[n] = b[n] +
∑
k∈Ωu

u[k]p[n− k] + w[n], n ∈ Ωv, (1)

where n = [nx, ny, nz]
⊺ ∈ Ωv and k = [kx, ky, kz]

⊺ ∈ Ωu are
the array indexes of three-dimensional (3-D) volumetric data, each
element corresponding to the position of horizontal, vertical, and
depth, respectively. Ωu,Ωv ⊂ Z3 represent the range of the indexes.
{b[n]}n represents the direct current (DC) component in the Z di-
rection that does not contribute to interference, {w[n]}n denotes the
noise component and {p[m]}m is an interference waveform repre-
senting the OCT measurement process and has a shape similar to
the cosine modulated Gaussian function. u[k] corresponds to the re-
flectance in the Z direction of the object at position k ∈ Ωu and has
a constrained value as u[k] ∈ [−1, 1], k ∈ Ωu.

In this paper, as an impulse response {p[m]}m, we adopt

p[m] = αδ[mx]δ[my] exp

(
−m2

z

2σ2
p

)
cos (ωpmz) , m ∈ Z3, (2)

where m = [mx,my,mz]
⊺, α, σp and ωp indicate the amplitude,

standard deviation and angular frequency, respectively, and δ[m] is
the impulse sequence defined by 1 for m = 0 and 0 for m ̸= 0.

In order to restore the source array {u[k]}k, the Z direction
DC component {b[n]}n, noise {w[n]}n and local fluctuation by
{p[m]}m must be removed. The Z direction DC component {b[n]}n
can be easily removed with a high-pass filter. Therefore, as the ob-
servation data in the following discussion, we adopt

v[n] = r[n]− b[n], n ∈ Ωv. (3)

3. PROPOSED RESTORATION METHOD

In this section, we propose a method to restore the source data
{u[k]}k from observation data {v[n]}n by removing the local

Algorithm 1 Primal-dual plug-and-play image restoration [18]

Input: x(0), y(0)
1 , y(0)

2

Output: x(n)

1: while A stopping criterion is not satisfied do
2: x(n+1)=GR

(
x(n)−γ1

(
Φ⊺y(n)

1 +Ψ⊺y(n)
2

)
,
√
γ1
)

3: y
(n)
1 ← y

(n)
1 + γ2Φ

(
2x(n+1) − x(n)

)
4: y

(n)
2 ← y

(n)
2 + γ2Ψ

(
2x(n+1) − x(n)

)
5: y

(n+1)
1 = y

(n)
1 − γ2prox 1

γ2
Fv

(
1
γ2

y
(n)
1

)
6: y

(n+1)
2 = y

(n)
2 − γ2PC

(
1
γ2

y
(n)
2

)
7: n← n+ 1
8: end while

fluctuation due to {p[m]}m and noise {w[n]}n. As a restora-
tion algorithm, we adopt PDPnP, which can avoid using inverse
matrix operation and incorporate existing regularized Gaussian de-
noiser [18].

3.1. Problem setting of OCT data restoration

We estimate reflectance distribution {u[k]}k as source array from
OCT observation {v[n]}n. Now, let u ≜ vec({u[k]}k) ∈ RN ,
v ≜ vec({v[n]}n) ∈ RM and w ≜ vec({w[n]}n) ∈ RM , i.e., the
vector representations of source, observation and noise, respectively,
where N = |Ωu| and M = |Ωv|. With these vector notations, a
linear shift invariant system with an impulse response {p[m]}m is
represented by matrix P : RN → RM . From (1) and (3) with the
range constraint, the observation model is represented by

v = Pu+w, u ∈ [−1, 1]N , (4)

Furthermore, we represent the generation process of the source
data u by a certain synthesis dictionary D : RL → RN and a coef-
ficient vector s ∈ RL as

u = Ds. (5)

Assuming sparseness in s, the problem setting is formulated as

ŝ = arg min
s∈RL

1

2
∥PDs− v∥22 + λR(s), s.t.Ds ∈ [−1, 1]N , (6)

where ∥ · ∥2 is 2-norm, R(·) : RL → [0,∞) is the regularization
term, and λ ∈ [0,∞) is a regularization parameter. Estimation of
source is obtained as û = Dŝ.

3.2. Restoration algorithm

In this paper, we propose to adopt PDPnP to solve the con-
strained optimization problem in (6) [18]. Algorithm 1 shows
the steps of PDPnP, where Steps 2 and 4 are modified from the
original to be able to incorporate a generation process with D.
GR(·, σ) : RL → RL embeds processing to remove additive white
Gaussian noise (AWGN) with standard deviation σ with a certain
regularization R(·). Symbols γ1 and γ2 are step size parameters,
which should satisfy γ1γ2(σ1(L))

2 ≤ 1, where L =
(
Φ⊺ Ψ⊺)⊺

and σ1(L) is the maximum singular value of L [18].
The modified form of PDPnP aims to solve the problem

x̂ = arg min
x∈RL

R(x) + Fv(Φx) s.t.Ψx ∈ C, (7)

802



Fig. 2. Discrete model of coherence function defined by (2), where
the standard deviation and angular frequency are set to σp = 8,
ωp = 0.5π, and amplitude α is set so that σ1(P) is 1.

whereR(·) : RL → [0,∞) is a regularization term, Fv(·) : RM →
[0,∞) is a data fidelity term, Φ : RL → RM is a linear measure-
ment process, Ψ : RL → RN is a linear generation process, and
C ∈ RN is a hard constraint. The conditions under which the modi-
fied PDPnP method can be applied are the same as the original [18].

3.3. Restoration model

In order to apply the PDPnP framework in (7) to the problem in
(6), let Φ = PD, Ψ = D, Fv(y) = (2λ)−1∥y − v∥22, and
x = s. If synthesis dictionary D satisfies Parseval tightness, i.e.,
DD⊺ = I [22, 23], then σ1(L) = σ1 ((P

I )D) = σ1 ((P
I )) holds,

where I is the identity matrix. In addition to orthonormal trans-
forms, the undecimated Haar transform (UDHT) [24] and nonsep-
arable oversampled lapped transform (NSOLT) [25] satisfy the Par-
seval tight condition. The metric projection of line 6 is given by
[PC(x)]n =

[
P[−1,1]N (x)

]
n

= min{max{[x]n,−1}, 1}, where
[·]n denotes the n-th element of the argument vector.

Since the source data u is the reflectance distribution of speci-
men object such as bio-tissue, it is expected to be sparse by itself. It
is also possible to sparsely represent the coefficient vector s further
by using an appropriate synthesis dictionary D to exploit the spatial
correlation of u. Assuming 1-norm regularizer R(·) = ∥ · ∥1, the
Gaussian denoiser GR(·, σ) results in[

G∥·∥1(x, σ)
]
n
= sgn([x]n)max

{
|[x]n| − σ2, 0

}
. (8)

With (8), the optimality of PDPnP is guaranteed.
As another configuration, it is also possible to plug a sophis-

ticated Gaussian denoiser with regularization into GR(·, σ). Al-
though explicit representation of the regularization term R(·) is not
always possible and the optimality may lose, high quality restora-
tion can be expected. In Section 4, the performance is evaluated
with BM4D [21] as GR(·, σ), as well as soft-thresholding in (8).

4. PERFORMANCE EVALUATION

In this section, let us verify the significance of the explicit regu-
larization with dictionary D and implicit one with BM4D through
simulation for artificial data. Then, an experimental result for an ob-
servation array of the sensory epithelium of a guinea pig inner ear
measured by the MS en-face OCT device is shown.

4.1. Restoration simulation

In order to verify the significance of the regularization, we compare
the restoration results with different settings. An example of tomo-
graphic data u is shown in Fig. 3 (a). This target source is assumed
to be measured through the coherence function shown in Fig. 2. An
example of observation volumetric data v is shown in Fig. 3 (b).

(a) Source (b) Observation
PSNR: 21.50 dB

Fig. 3. Example set of artificial volumetric arrays. (Top) YZ slice
at the center of X. (Bottom) Z direction sequence at the center of
XY. (a) Source u of 64× 64× 128 voxels, where the reflective XY
planes are randomly generated. The reflective plane generation rate
is set to 0.06. The positions in the Z direction are set randomly by
the uniform distribution of integers in [1, 128]. Each reflectance is
randomly set by the uniform distribution of [−1, 1]. (b) Observation
v. The function in Fig. 2 is set to the measurement process as P.
AWGN of zero mean and 0.1 standard deviation is set as noise w.

(a) PDPnP w IDNT & BM4D
PSNR: 27.31 dB

(b) PDPnP w UDHT & SFTH
PSNR: 26.32 dB

(c) PDPnP w IDNT & SFTH
PSNR: 25.90 dB

(d) BM4D denoise
PSNR: 22.73 dB

Fig. 4. Simulation results of restoration. (Top) YZ slice at the center
of X. (Bottom) Z direction sequence at the center of XY. The array
in Fig. 3 (b) is used as observation data v, where γ1 = 0.01, γ2 ≃
47.62, λ = 0.005 and ♯ of iterations is set to 200. “UDHT” stands
for the undecimated Haar transform, and “SFTH” stands for soft-
thresholding. For reference, denoising result with BM4D [21] is
shown in (d), where the standard deviation of noise is set to 0.1(=√
γ1).

Parameter settings: We use step-size parameters γ1 = σ2
w =

0.01 and γ2 = 1/(1.05γ1τ
2) ≃ 47.62, and set the number of itera-

tions to 200. Under the condition that the synthesis dictionary D is
Parseval tight and the maximum singular value σ1(P) of P is 1, we
set τ = σ1(L) =

√
λ1(P⊺P) + 1 =

√
2, where λ1(P

⊺P) is the
maximum eigenvalue of P⊺P. In (2), parameter α is used for the
normalization.

Synthesis dictionary and regularizer: In this simulation, we
evaluate the performance on the combinations of dictionary D and
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Fig. 5. PSNRs for various reflecting plane generation (RPG) rate.
Ten trials are conducted for each case, where PSNR is calculated by
using average MSE of whole trials. “IDNT” is the identity mapping,
“UDHT” is the undecimated Haar transform, and “SFTH” denotes
the soft-thresholding.

Gaussian denoiser GR(·, σ) as follows:

• Identity mapping and BM4D [21]
• UDHT [24] and soft-thresholding (8)
• Identity mapping and soft-thresholding (8)

UDHT is applied only to each XY slice of the 3-D volumetric data
as a 2-D transform, where the number of tree levels is set to 3. λ was
empiricaly set to 0.005.

Results and discussions: The restoration results of the simula-
tion are summarized in Fig. 4. Fig. 4 (a) shows the highest perfor-
mance among all the settings, although there is no guarantee to con-
verge an optimal solution when using BM4D as a regularized Gaus-
sian denoiser. The result using UDHT in Fig. 4 (b) shows higher
restoration performance than that using the identity mapping in (c).
It can be verified that an appropriate synthesis dictionary D helps
improve quality. (d) shows a result of BM4D denoiser for reference.

Fig. 5 summarizes the restoration results of 10 trials under each
condition by changing the reflection plane generation (RPG) rate.
Peak signal to noise ratio (PSNR) is calculated by using average of
total mean squared error (MSE) of all trials, where the values are
biased and scaled from [−1, 1] to [0, 1]. The validity of PDPnP with
BM4D is verified. Improvement in quality can be expected with soft-
thresholding by selecting an appropriate synthesis dictionary D.

4.2. Restoration experiment

Fig. 6 shows an observation of the sensory epithelium of the guinea
pig inner ear measured by an MS en-face OCT device, and Fig. 7
shows the result of tomographic data restored by PDPnP with the
identity mapping and BM4D, where the model in Fig. 2 was set ex-
perimentally for the observation process P, and the same setting as
the simulation in 4.1 is adopted. The data is of size 244×240×1024.
Although it has almost 60M voxels, sharp volumetric restoration is
achieved by performing PDPnP.

5. CONCLUSIONS

In this study, we proposed an OCT volumetric data restoration
method by using the PDPnP framework. We verified the signifi-
cance of the proposed method by restoration simulation on artificial
tomographic data. In addition, we conducted a restoration exper-
iment on actual MS en-face OCT measurement data and verified

Fig. 6. Observation of sensory epithelium of a guinea pig inner ear
measured by MS en-face OCT, where the intensity of all images is
emphasized. (Top) Fifteen consecutive XY slices. (Center) YZ slice
at the center of X. (Bottom) Z direction sequence at the center of XY.
To remove the Z direction DC component, the output of the average
filter of length 21 is subtracted from the original as preprocessing.

Fig. 7. Restored result in absolute value, where the intensity of all
images is emphasized. (Top) Fifteen consecutive XY slices. (Center)
YZ slice at the center of X. (Bottom) Z direction sequence at the
center of XY. ♯ of iterations is set to 200.

that PDPnP is a practical method for high dimensional data. We are
planning further study, such as estimation of measurement process,
construction of suitable synthesis dictionary and setting of noise
model, as well as improvement of MS en-face OCT acquisition.
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