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ABSTRACT

One major difficulty in medical image segmentation is intensity
inhomogeneity, which manifests itself with a slow intensity varia-
tion over the whole image domain. Recently, a local binary fitting
(LBF) model has been proposed to solve this problem within level
set segmentation framework. However, the LBF model has two main
problems, i.e., high computational cost and sensitivity to initializa-
tion. By analyzing the LBF model, we find that the most computa-
tional part is the calculation of two cluster images, which need to be
updated in each iteration during the evolution of level set function.
With this observation in mind, we propose a novel two-scale filtering
(TSF) model, in which the two cluster images can be pre-calculated
before evolution. Additionally, we implicitly utilize order constraint
to restrict the order of two cluster images. As a result, the proposed
TSF model is less sensitive to initialization. Extensive experiments
on real medical images illustrate the desirable performances, as com-
pared with the state-of-the-art models.

Index Terms— Image segmentation, level set, active contour,
region-based, two-scale filtering model

1. INTRODUCTION

Segmentation plays an important role in medical image comput-
ing, and it has a wide range of applications. Over the past decades,
many segmentation methods have been proposed. Among them, lev-
el set segmentation methods, especially the region-based level set
methods, attract more attention for their special advantages over the
other methods, i.e., sub-pixel segmentation accuracy and arbitrary
topological transformation.

To the best of our knowledge, the first region-based segmenta-
tion method is proposed in [1], called the Chan and Vese (CV) mod-
el. In this method, two values are adopted to fit the pixel intensities
in the internal and external of the segmented regions. Due to the u-
tilization of pixel intensity statistical information, the CV model is
less sensitive to initialization and noise. Especially, the segmented
contour of this model may not stop at weak edges. It is worth noting
that the CV model and its variations, such as the total variation CV
(TVCV) model in [2, 3] and the model proposed in [4], are called
global region-based methods. However, the CV model always fails
to segment the interested object out when the input image presents
intensity inhomogeneity, which manifests itself with a slow intensity
variation in the same tissue over the whole image domain.

To address intensity inhomogeneity problem, many local region-
based methods have been proposed. One of the most famous local
region-based method is proposed in [5], called the local binary fitting
(LBF) model. The core idea behind the LBF model is to consider the
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CV model locally by introducing a Gaussian kernel function. Com-
pared with the CV model, the LBF model usually provides more
accurate segmentation results, especially when the input images are
inhomogeneous. However, the LBF model has two major limitation-
s, which are the superiorities of CV model. First, it is sensitive to the
initialization, especially when the size of local Gaussian kernel is s-
mall. Second, the computational cost of the LBF model is large, due
to the utilization of convolution operation. Recently, many models
have been presented by proposing new local region-based models or
improving the LBF model.

Motivated by the LBF model, local Gaussian fitting (LGF) mod-
el is proposed in [6]. Compared with binary distribution in the LBF
model, Gaussian distribution in the LGF model is more accurate in
the representation of the distribution of local pixel intensities. The
local linear classification (LLC) model is introduced in [7]. The LLC
model is less sensitive to initialization. Unfortunately, both the LGF
and LLC models need more computational cost than the LBF model.
The local image fitting (LIF) model proposed in [8] is faster than the
LBF model, however, it is still sensitive to initialization. Moreover,
it has a lower segmentation accuracy than the LBF model. The local
CV model is proposed in [9] by incorporating local image informa-
tion. It is less sensitive to initialization compared with LBF. The
local signed difference model is proposed in [10]. The main supe-
riority of this model is its speed (similar with the global methods).
However, the segmentation results are not satisfied.

To solve the initialization problem, a number of improved mod-
el derived from the LBF model are proposed. For example, a new
model that combines the CV and LBF models through a weight-
ing strategy is proposed in [11]. However, choosing an appropriate
weighting value is a hard problem, since the degree of intensity in-
homogeneity is unknown. In [12], the local order model is added to
the original LBF model to ensure that the local binary fitting values
hold global consistent order. However, the order model is hard to be
extended from the two-phase model to the multi-phase case. Same
with the order model, [13] proposes a contrast constraint. The order
constraint can be regarded as a special contrast constraint with the
contrast value being zero. Motivated by [3], the convex LBF mod-
el, which is independent to initialization, is proposed in [14]. The
above models are less sensitive to initialization, compared with the
LBF model. However, their computational cost is still very high.

In this paper, we propose a new two-scale filtering (TSF) mod-
el to decrease the computational cost as well as reduce initialization
sensitivity of the LBF model. Firstly, in the object scale, a Bilateral
filtering operation is utilized to obtain the local clusters, named as
object image. Then, in the context scale, a Gaussian filtering opera-
tion is adopted to obtain the mixed result of local clusters, named as
context image. By calculating the difference of context and objec-
t images, the complementary local clusters, named complementary
image, is obtained. Finally, order operation is utilized to separate
local foreground and background clusters.
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2. BRIEF REVIEW ON LBF AND MOTIVATION

The LBF model [5] tries to find a contour, which is represented
by a level set function φ, to divide the whole image domain Ω into
two non-overlapped parts. And it segments the object from back-
ground by minimizing the following energy function:

ELBF(φ,C1, C2)

= λ1

∫∫
Kσ(x− y)|I(y)− C1(x)|2Hε(φ(y))dydx (1)

+ λ2

∫∫
Kσ(x− y)|I(y)− C2(x)|2(1−Hε(φ(y)))dydx,

where Hε(x) = 1
2

[
1
2

+ 2
π

arctan
(
x
ε

)]
is a smooth version of the

Heaviside function. The standard gradient descent is used to mini-
mize the energy function of Eqn. (1), given by

∂φ

∂t
= −δε(φ)(λ1e1 − λ2e2),

where t is the time step, δε(x) = 1
π

ε
ε2+x2

is the derivation ofHε(x),
and the terms e1 and e2 are defined as

ei(x) =

∫
y∈Ω

Kσ(y − x)|I(x)− Ci(y)|2dy, i = 1, 2 (2)

yielding

C1 =
Kσ ⊗ [Hε(φ)I]

Kσ ⊗Hε(φ)
, C2 =

Kσ ⊗ [(1−Hε(φ))I]

Kσ ⊗ (1−Hε(φ))
, (3)

where⊗ is the convolution operation, and the two values C1 and C2

can be regarded as two cluster images.
The core behind the LBF model is the calculation of the two

cluster images C1 and C2. In the LBF model, they are updated dur-
ing the evolution of the level set function. From Eqn. (3), the cal-
culation of the two cluster images is very time consuming due to the
utilization of the convolution operation. Accordingly, to reduce the
amount of calculation, it is very necessary to pre-calculate the two
cluster images, which is the main issue addressed in this paper.

3. THE PROPOSED METHOD

3.1. Two-scale Filtering Model

After performing image segmentation, the segmentation contour
(or the zero level of the level set function) is desired to match the
boundary of the object. Combining with Eqn. (3), when desirable
segmentation result is obtained, C1(x) and C2(x) will be the mean
values of the intensities of local foreground and background respec-
tively. In other words, to obtainC1(x) (orC2(x)), we can collect the
pixels that belong to foreground (or background), and then calculate
the mean value. This process is very close to the idea of the Bilateral
filtering. Hence, in the object scale, the local cluster is obtained by
Bilateral filtering of the input image:

B = BF(I; p), (4)

where BF(.) is the Bilateral filtering operator, and p represents the
parameters for the Bilateral filtering operation. In our method, the
Guided filtering in [15] is selected as the Bilateral filtering.

The Bilateral filtered image B mixes foreground and back-
ground clusters together. Specifically, for each pixel B(x) in the
Bilateral filtered image B, we cannot distinguish it from foreground

to background, that is, it may be the foreground cluster C1(x) or the
background cluster C2(x). Moreover, the Bilateral filtered image B
only tells us one cluster for each pixel. In other words, for each pixel
located at x, if it belongs to foreground, the Bilateral filtered result
B(x) can only provide the foreground cluster, i.e., C1(x) = B(x),
but cannot provide the corresponding background cluster C2(x).
It is similar for the pixels located at background. To solve above
problems, we propose a context scale filter, in which each pixel is a
combination of foreground and background clusters, given by

G = GF(I; q), (5)

where GF(.) is the Gaussian filtering operator with parameter q. For
each pixel G(x) in the Gaussian filtered image G, it mixes fore-
ground and background clusters together, thus,

G(x) = α(x)C1(x) + (1− α(x))C2(x), ∀x ∈ Ω, (6)

where 0 ≤ α(x) ≤ 1 is a mixture factor. Here, we assume α(x) =
0.5, which indicates the mixture is equal. Thereby, the mixture func-
tion is simplified as

2G(x) = C1(x) + C2(x), ∀x ∈ Ω. (7)

We define a new complementary image B̄ of the object image B,

B̄ = 2G−B, (8)

where B and G are the object and context filtered results.
The complementary image B̄ holds the similar property of the

object image B. In other words, it also mixes foreground and back-
ground clusters. Fortunately, the two images are just complementary
with each other. Thus, by applying order constraint proposed in [12]
on the object image B and the complementary image B̄, the fore-
ground and background images C1 and C2 are estimated by

C1(x) = max(B(x), B̄(x)),

C2(x) = min(B(x), B̄(x)), ∀x ∈ Ω, (9)

where max(·) and min(·) are maximum and minimum functions.

3.2. Level-set Formulation of Segmentation Model

Based on the calculated foreground and background images C1

and C2 in Eqn. (9), the objective function of our two-scale filtering
(TSF) model under the level set formulation is

ETSF(φ) = λ1

∫
x∈Ω

|I(x)− C1(x)|2Hε(φ(x))dx

+ λ2

∫
x∈Ω

|I(x)− C2(x)|2(1−Hε(φ(x)))dx. (10)

In the TSF model, the foreground and background pixels are desired
to be close to the foreground and background clusters, respectively.
By incorporating the length and signed distance function regulariza-
tion terms, the final energy function is

F (φ) = ETSF(φ) + νL(φ) + µP (φ), (11)

where ν and µ are two weighting constants. The second term

L(φ) =

∫
x∈Ω

|∇Hε(φ(x))|dx

is the contour length term, which constricts the length of the seg-
mentation contour, and the third term

P (φ) =

∫
x∈Ω

1

2
(|∇φ(x)| − 1)2 dx

is the regularization term proposed in [16], which characterizes the
deviation of the level set function from a signed distance function.
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Table 1. Comparison of the data terms of CV, LBF and TSF models.
Model Data Term Complexity Fitting

CV
−δε(φ) (λ1d1 − λ2d2)
di(x) = |I(x)− ci|2, i = 1, 2.

O(h× w × t) Global

LBF
−δε(φ)(λ1e1 − λ2e2)
ei(x) =

∫
y∈Ω

Kσ(y − x)|I(x)− Ci(y)|2dy, i = 1, 2
O(h× w × k2 × t) Local

TSF
−δε(φ) (λ1f1 − λ2f2)
fi(x) = |I(x)− Ci(x)|2, i = 1, 2.

O(h× w × t) Local

3.3. Optimization and Implementation

The standard gradient descent method is adopted to minimize
the objective energy function. Specifically, we utilize the steepest
descent method to minimize the energy function F (φ) in Eqn. (11)
with respect to the level set function φ. The gradient flow equation
is given by

∂φ

∂t
= −∂F (φ)

∂φ

= −δε(φ) (λ1f1 − λ2f2)

+νδε(φ)div
(
∇φ
|∇φ|

)
+ µ

(
∇2φ− div

(
∇φ
|∇φ|

))
(12)

where

fi(x) = |I(x)− Ci(x)|2, i = 1, 2. (13)

The first term −δε(φ) (λ1f1 − λ2f2) derived from the TSF model
is named as the data term.

To implement our method, the level set function φ is first initial-
ized as a binary function as follows:

φ0(x) =


ρ, x ∈ Ω0 − ∂Ω0

0, x ∈ ∂Ω0

−ρ, x ∈ Ω− Ω0

(14)

where Ω0 is a subset of the image domain Ω, and ∂Ω0 is the bound-
ary of Ω. Then, the level set function φ is evolved according to

φt+1 − φt

∆t
= −δε(φt) (λ1f1 − λ2f2)

+νδε(φ
t)div

(
∇φt

|∇φt|

)
+ µ

(
∇2φt − div

(
∇φt

|∇φt|

))
(15)

which is the discrete version of Eqn. (12).

3.4. Advantages over the State-of-the-art Models

In this subsection, we describe the main advantages of the pro-
posed TSF model over the classical CV and LBF models by compar-
ing their data terms, which are used to guide the evolution of level
set functions. The data terms of CV, LBF and TSF models are listed
in Table 1, from which we can see that the differences arise from the
calculation of di, ei and fi. In the following, we compare them in
computational complexity and image fitting.

Computational Complexity: We only focus on the computa-
tional complexity analysis for the evolution of level set function, be-
cause it is the most time-consuming part in level set based segmenta-
tion. The contour length term δε(φ

t)div( ∇φt

|∇φt| ) and the regulariza-

tion term (∇2φt−div( ∇φt

|∇φt| )) are independent to the data term, and

the computational complexity of them are proportional to the size of
image and the number of iterations, which isO(h×w× t), where h
and w are height and width of the input image, respectively, and t is
the number of iterations. In CV, the computational complexity of the
data term is alsoO(h×w×t). Hence, the computational complexity
of CV is O(h× w × t). In LBF, convolutions are performed to ob-
tained ei, thereby, its computational complexity isO(h×w×k2×t),
where k is the size of Gaussian kernel. The two smooth functions
C1 and C2 are updated in each iteration. As illustrated in Eqn. (3),
the computational complexity is also O(h×w× k2 × t) due to the
utilization of convolution. Hence, the computational complexity of
LBF is O(h×w × k2 × t). In TSF, the data term can be calculated
in advanced due to C1 and C2 can be pre-computed, which indi-
cates that the computational cost of data term is zero. Combining
with the contour length and regularization terms, the computational
complexity of TSF is O(h× w × t).

Image Fitting: In CV, the global two values c1 and c2 are uti-
lized to fit all foreground and background pixels. As a result, when
the input image is inhomogeneous, CV fails to segment out the ob-
ject (or foreground). Both LBF and TSF adopt local values C1(x)
and C2(x) to fit the local foreground and background pixels. Hence,
both of them can solve the intensity inhomogeneous problem.

To sum up, the TSF model has the same computational complex-
ity with the global CV model, while it can use local image informa-
tion to solve intensity inhomogeneity as the local LBF model.

4. EXPERIMENTAL RESULTS

In this section, we compare our model with the state-of-the-art
approaches, including CV [1], SBGFR [4], LIF [8], LBF [5], LL-
C [7] and CK [17] in following aspects, i.e., segmentation accuracy
and run speed. Eight medical images acquired via different tech-
niques, MRI, X-ray, and ultrasound are selected for both qualita-
tive and quantitative evaluations. For the quantitative comparison,
IoU =

Mseg∩Mtruth
Mseg∪Mtruth

(Intersection over Union) is utilized as the eval-
uation criterion, whereMseg andMtruth are segmented and ground
truth foreground masks, respectively. The ground truths are created
by manual segmentation.

4.1. Comparison

The comparisons on eight medical images are shown in Fig. 1.
The main difficulties of these images are listed as follows:

1. Intensity inhomogeneity in MRI may be caused by many fac-
tors, such as radio-frequency non-uniformity, static field inhomo-
geneity and patient-specific interactions.

2. The difficulties of vessel image arise from three aspects. First,
the vessel structure is slightness. Segmenting slightness objects is a
well-known difficult problem. Second, the contrast between vessel

793



Fig. 1. Comparative results of the proposed method with CV, SBGFR, LIF, LBF, LLC and CK on two MRI brain images. The initial and final
contours are marked in blue and red, respectively.

Table 2. Comparison of RoUs on the images from Fig. 1. The best
and second results are indicated by bold face and underline.

CV SBGFR LIF LBF LLC CK Ours
(1) 0.414 0.554 0.542 0.567 0.864 0.640 0.790
(2) 0.545 0.491 0.610 0.580 0.791 0.673 0.688
(3) 0.635 0.674 0.499 0.189 0.728 0.962 0.814
(4) 0.535 0.479 0.283 0.245 0.831 0.995 0.893
(5) 0.202 0.207 0.287 0.583 0.209 0.746 0.747
(6) 0.380 0.387 0.266 0.545 0.338 0.685 0.802
(7) 0.224 0.150 0.205 0.143 0.118 0.115 0.225
(8) 0.727 0.664 0.401 0.577 0.837 0.960 0.957
Mean 0.458 0.451 0.386 0.429 0.589 0.722 0.740

and background is so low that in some area it is even hard for human
nature to distinguish it from its local background. Third, the intensity
inhomogeneity also exists in these two images.

3. There is almost no intensity inhomogeneity in heart image
and two ultrasound images. Unfortunately, the noise, such as block
and spot noise, is very large in these images.

4. In X-ray bone image, intensity inhomogeneity is also very se-
rious. In some parts, such as in the bone joints, the contrast between
bone and non-bone background is also very low.

As shown in Fig. 1, only the proposed LSF model can success-
fully segment out all objects. For the global region-based methods,
i.e., CV and SBGFR, the details cannot be segmented out. With ar-
bitrary initialization, the segmentation contours of CK stick on the
smooth regions. For LIF and LBF, the segmentation results mix the
object and background together. The quantitative comparison of the
above eight images with IoU evaluation criterion are illustrated in
Table 2. As shown in this table, our method achieves top two ranks
in eight images and the mean result is best.

4.2. Run Speed

The run speeds on the eight medical images are also evaluated.
The comparative results are shown in Table 3. The run speed is
proportional to the iteration number. For all the methods, we use
convergence of level set evolution as the termination criteria. From
Table 3, we can see that our method has the comparative speed to
two global methods, i.e., CV and SBGFR on most data. Specifically,
our method is slower in two ultrasound images. The main reason is

Table 3. Run speed (in second) of the eight images in Fig. 1.

CV SBGFR LIF LBF LLC CK Ours
(1) 0.181 0.198 5.63 9.91 22.6 20.0 0.239
(2) 0.434 0.501 11.7 10.2 98.8 62.2 0.406
(3) 0.179 0.208 11.4 5.38 23.1 5.23 0.254
(4) 0.202 0.216 15.3 5.5 35.0 4.77 0.281
(5) 0.480 0.529 13.3 14.5 108 11.4 2.68
(6) 0.154 0.168 4.75 2.70 21.1 7.33 1.00
(7) 0.225 0.262 7.32 7.15 1.31 4.57 0.233
(8) 0.252 0.303 8.83 25.9 98.7 78.1 0.557
Mean 0.192 0.217 7.11 7.39 37.2 17.6 0.514

that in these two images, our model needs large iteration numbers. It
is worth noting that LLC is slower than the other methods. The main
reason is that the time step in this method is very small. Thereby, it
needs a large number of iterations to achieve convergence.

5. CONCLUSION AND DISCUSSION

In this paper, a new TSF model is proposed to solve image seg-
mentation problem. Compared with the state-of-the-art approaches,
our model has the following two superiorities. First, our method
has higher segmentation accuracy than the other local region based
methods. Second, our method is very fast. Experimental results
illustrate that our method has the similar speed as the global region-
based methods, such as the traditional CV model.

However, our method also has some limitations, which will be
the effort direction of future work. First, when the initialization is
very well, the other local region-based methods, such as LLC and
CK, may have higher segmentation accuracies than our model. The
main reason is that the local cluster images are fixed in the evolution
of level set function (or pre-calculated before evolution). Although
the run speed can be accelerated, the local cluster images cannot
benefit from the updating of level set function. As a result, the small
scale tissue structure may not be well segmented out in our mod-
el. To improve the TSF model, in the future, we will try hard to
find new models, in which the local cluster images can be close to
those of other local models. Second, due to implicit utilization of
order constraint, our model cannot segment bright and dark objects
simultaneously. One potential solution is to introduce multi-phase
technique, which will be a future direction.
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