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ABSTRACT

Functional Magnetic Resonance Imaging (fMRI) is a widely
used and non-invasive technique for recording changes in
brain activity. However, susceptibility artifacts are ubiqui-
tous distortions in fMRI, especially strong in high-resolution
images, causing the misrepresentation of brain function and
structure in the affected regions. Here, we present a novel
method for correcting these distortions in high-resolution
fMRI images based on the hyper-elastic susceptibility artifact
correction (HySCO) method. The novelty of the proposed
method is the utilization of the easily-acquired T1-weighted
(T1w) anatomy image as a ground-truth measurement to
regularize deformations, thereby obtaining meaningful cor-
rections. The performance of the new method is compared
to that of HySCO. Results from high-resolution (1mm) EPI
data are presented demonstrating the robustness of the new
method for image correction and its suitability for subsequent
fMRI analysis.

Index Terms— Susceptibility artifact, high-resolution
fMRI, artifact correction, inverse-gradient, anatomy-guided.

1. INTRODUCTION

Functional MRI allows researchers to non-invasively examine
not only the structure of the human brain, but also its func-
tions. Since its first demonstration twenty five years ago [1],
fMRI has become a widely used tool in brain research. Many
sophisticated yet robust experimental designs have been de-
veloped for analysing fMRI data. For example, the popula-
tion receptive field (pRF) analysis, used in some visual fMRI
experiments, reveals functional maps in early visual cortex
by modelling the time course of voxels measured with fMRI,
and estimating the section of the visual field to which neu-
rons in each voxel respond [2]. Recent improvements in MRI
technology have greatly increased the resolution of functional
and anatomical brain images, giving researchers an unprece-
dented level of insight into how the human brain processes
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information. However, fMRI images always contain geomet-
ric and intensity distortions, known as susceptibility artifacts
(SAs), which have yet to be adequately addressed. fMRI data
acquired using the Echo-Planar Imaging (EPI) technique are
inevitably affected by SAs [3] due to its fast imaging capabil-
ity (e.g. a 3-D image in 2 seconds). The source of these ar-
tifacts is local field inhomogeneities caused by differences in
magnetic susceptibilities of various tissue types (e.g. fat and
blood) [3,4]. Addressing SAs is crucial, as they can confound
the interpretation of results concerning the structure and func-
tion of the brain.

Several susceptibility artifact correction (SAC) methods
have been proposed for multiple types of MRI images, such as
structural MRI, diffusion MRI, and fMRI. The most common
of these approaches involves estimating phase dispersions
(phase-map), caused by the field inhomogeneities, which are
then used to generate the corrected images by unwarping
distorted images [4, 5], or rewinding the additional accumu-
lated phase in k-space [6]. Another approach is modeling the
distortions by a point spread function (PSF), the corrected
images being results of either a deconvolution operation of
distorted images with the PSF [7, 8], or an algorithm using
the conjugate gradient [9]. A further approach registers the
distorted images with a corrected image by using rigid [10]
or non-rigid registration [11–13].

The focus of this work is fMRI images acquired using
EPI sequences, where SAs are most pronounced along the
phase-encoding (PE) direction (direction that images are ac-
quired) [14, 15]. Interestingly, two EPI fMRI images, ac-
quired using an identical imaging sequence but inverse po-
larity of PE gradients (inverse-blip or inverse-gradient), have
inverse patterns of distortions in the PE direction. Thus, some
correction methods use inverse-gradient images to estimate
correction matrices. Chang and Fitzpatrick proposed a simple
spatial correction by finding pairs of corresponding points in
inverse-gradient images [16]. An alternative approach models
the field inhomogeneity as a combination of discrete cosine
basis functions [17]. An integration of the inverse-gradient
based approach into a registration framework was proposed
in [15]. Building on this, Ruthotto et al. proposed a method,
named HySCO, by introducing hyper-elastic image registra-
tion to achieve a more realistic and better constrained distor-
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tion framework [18]. The use of an independent set of images,
specifically T2-weighted (T2w) images, to tune the inverse-
gradient registration has also been suggested in [19].

The essentially undistorted anatomy image, collected us-
ing a much slower image acquisition (about 6 minutes), pro-
vides an almost ground-truth image of the brain. In this paper,
we propose to integrate the T1w anatomy image into a state-
of-the-art SAC scheme, namely HySCO [18]. The specific
advantage of utilizing a T1w image over a T2w image is that
the T1w image is routinely acquired alongside of fMRI im-
ages for anatomical reference and hence does not require ad-
ditional scanning time. Here we suggest a second use of T1w

images, aiding in creating a robust and accurate procedure for
removing SA from high-resolution fMRI images. The work
presented here may be considered as extending the original
HySCO work in three respects: model formulation, image
type, and experimental evaluation.

The paper is organised as follows. Section 2 presents the
inverse-gradient correction model. Section 3 introduces the
proposed SAC method. Section 4 presents experiments and
analysis. Section 5 presents concluding remarks.

2. INVERSE-GRADIENT CORRECTION MODEL

The inverse-gradient approach is a two-step correction method.
In the first step, the field inhomogeneity B is estimated using
the two corresponding images I1 and I2 with inverse-blip. In
the second step, the distorted images are unwarped using a
distortion model, resulting in corrected images.

First, we describe the distortion model in the presence of
the magnetic field inhomogeneity. Let E be the 3-D ideal im-
age and I be the acquired but distorted image. The distortion
model at every 3-D point p is defined [15, 16] as

E(p) = I(p +B(p)v) [1 + ∂v(B(p))], (1)

where v denotes the distortion direction (PE direction), and
∂v(B(p)) denotes the directional derivative of B at p along
v. Let us assume that the PE gradient is applied in the first
dimension, hence v = (1, 0, 0). In Eq. (1), the term (1 +
∂v(B(p))) denotes the intensity modulation of the acquired
images. The term (p + B(p)v) denotes the geometric dis-
placement. In other words, the point p in the ideal image E
is shifted to point (p +B(p)v) in the acquired image I . Note
that B causes distortions in acquired images, and hence it is
called the deformation field.

Next, assume that v is the PE direction of image I1; thus
the PE direction of image I2 is −v. By applying Eq. (1), the
corrected images E1 and E2 are

E1(p) = I1(p +B(p)v) [1 + ∂v(B(p))], (2)
E2(p) = I2(p−B(p)v) [1− ∂v(B(p))]. (3)

To generate the corrected images, the deformation field B is
estimated such that the two images E1 and E2 should be as
similar to each other as possible. The similarity can be mea-
sured by the sum of squared differences (SSD) over the image

domain Ω ⊂ R3 [15, 18]:

D(I1, I2, B) = D(E1, E2) =
1

2

∫
Ω

(E1(p)− E2(p))2 dp.

(4)
Finding B by minimizing the distance function D(I1, I2, B)
is categorized as an ill-posed problem [15,18]: multiple possi-
ble solutions exist, but only one is correct. Thus, prior knowl-
edge about smoothness and invertibility of the geometrical
transformation is introduced to regularize B [18]. To enforce
the smoothness of the transformation, a Tikhonov regularizer
Sdiff is integrated into the objective function [15]

Sdiff(B) =

∫
Ω

‖ ∂v(B(p)) ‖2 dp. (5)

To ensure the invertibility, the Jacobian matrix of the ge-
ometric transformation in Eqs. (2) and (3) must be invert-
ible. Chang and Fitzpatrick [16] demonstrated that this is
equivalent to satisfying the constraint: −1 6 ∂v(B(p)) 6
1, for all p ∈ Ω.

In addition, Ruthotto et al. observed that the deformation
field B should be as small as possible, and proposed to aug-
ment the objective function by a non-linear term Shyper [18].
This term is inspired by the hyper-elastic model:

Shyper(B) =

∫
Ω

φ(∂v(B(p))) dp, with φ(z) =
z4

1− z2
.

(6)
Finally, Ruthotto et al. proposed the objective function:

J(B) =D(I1, I2, B) + αSdiff(B) + βShyper(B),

s.t. | ∂v(B(p)) |6 1.
(7)

HySCO estimates B by minimizing (7) based on the Gauss-
Newton method, then generates the corrected images using
Eqs. (2) and (3). HySCO can provide corrected images with
high similarity, however the results may not be reasonable in
terms of the brain structure. For example, its results always
contain blur trails, as shown later in the corrected LR image
of Fig. 1. These artifacts are likely due to over-deformation
in the estimated B (see under arrows of Fig. 1) as there is no
constraint enforcing adherence to the correct brain structure.

3. PROPOSED ANATOMY-GUIDED CORRECTION

The T1w anatomy image, which has different contrast proper-
ties (modality) to EPI fMRI images, is typically regarded as a
gold standard representation of a subject’s brain anatomy. It
is routinely acquired for every subject that participates in an
fMRI study, and hence is readily available. Here, we propose
to integrate a T1w image into the HySCO registration in order
to tune the deformation with respect to the brain anatomy.

The proposed anatomy-guided inverse-gradient SAC
(AISAC) is described as follows. Let A denote the T1w

anatomy image. By incoporating the image A, the optimiza-
tion problem becomes finding the deformation field B such
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that images E1 and E2 (i) are as similar as possible, and (ii)
fit best with the imageA in terms of morphology. A similarity
term D(I1, I2, B,A) based on the normalized gradient field
(NGF) is introduced to satisfy the second condition. The NGF
can provide the image structure, and it has been proven to be
well-suited for the multi-modal registration problem [20].

The NFG measure can be defined as follows. First, for a
given image X , the NGF at any point p is defined as [20]

∇̃(X(p)) =
∇X(p)√

‖∇X(p)‖2 + ε2
, (8)

where ε2 is the edge threshold parameter. This parameter
determines what is considered an edge, i.e. a point p with
‖∇X(p)‖2 > ε2 belongs to the edge of image X , and vice
versa. The term ∇̃(X(p)) is a vector which reveals the inten-
sity change and its direction at point p.

Next, let 〈·, ·〉 denote the dot-product operator. The NGF
distance between two images X and Y is defined as

DNGF(X,Y ) =
1

2

∫
Ω

1− 〈∇̃(X(p)), ∇̃(Y (p))〉2 dp. (9)

The NGF similarity between two unwarped images E1

and E2 and the A is then introduced as

D(I1, I2, B,A) = DNGF(A,E1) +DNGF(A,E2). (10)

Finally, we propose to minimize the objective function:

J(B) =D(I1, I2, B) + αSdiff(B) + βShyper(B)+

γD(I1, I2, B,A)

s.t. | ∂v(B(p)) |6 1 for all p ∈ Ω.

(11)

The positive and user-defined regularization parameters α, β,
and γ represent the trade-off between the smoothness of B,
the deformation of the transformation, and the similarity to
the anatomy image, respectively. These parameters are em-
pirically chosen by evaluating a range of values. Small values
of α or β or large value of γ cause the violation of the in-
vertible constraint in (11). Large values of α or β reduce the
fitness of the corrected images. Small value of γ brings less
anatomy information into the registration procedure.

Here, the Gauss-Newton method with an Armajo type
line search is used for minimization. In the Gauss-Newton
method, starting with an initial guess, e.g. B0 ≡ 0, the (k +
1)th step of the iteration gives Bk+1 = Bk − λkGk(Hk)−1,
where Gk and Hk are the approximate gradient and Hessian
of the objective function J at Bk, respectively, and λk > 0 is
the learning rate at this step. The best learning rate, which is
found by the backtracking-Armijo line search, should be the
maximum value providing Bk+1 satisfying the constraint in
(11), thereby improving convergence [21].

The coarse-to-fine approach is integrated with the Gauss-
Newton method in minimizing J(B). This aims to avoid the
local minima and to speed up the convergence [18, 22]. In
implementation, a multilevel image representation is derived

first. The image representation in a coarser level is obtained
simply by averaging over adjacent cells. Next, the deforma-
tion field in the coarsest level is estimated by minimizing the
objective function in (11) using the image representation in
this level. The estimated deformation field in the coarser level
is interpolated to be the initial guess for the optimizer at a finer
level. The process of interpolation and estimation is repeated
until the deformation field in the finest level is obtained. The
coarse-to-fine approach is summarized in Algorithm 1.

Algorithm 1 AISAC: Anatomy-guided Inverse-gradient SAC
Input: I1 and I2: inverse-gradient EPI fMRI images,

A: anatomy image corresponding to fMRI images,
lmin, lmax: min, max level of data representation.

Output: Corrected images E1 and E2.
1: Derive the multilevel image representation;
2: Blmin−1 ← 0;
3: for l = lmin : lmax do
4: Interpolate Bl,0 from Bl−1: Bl,0 ← inter(Bl−1);
5: k ← 0;
6: Compute the objective function as in Eq. (11):

[J,Gk, Hk]← obj fnct(I1, I2, Bl,k, A, l);
7: while not converged do
8: Compute the new B via backtracking line search:

Bl,k+1 ← backtrack search(Bl,k, G
k, Hk);

9: Increment k: k ← k + 1;
10: Compute the objective function as in Eq. (11):

[J,Gk, Hk]← obj fnct(I1, I2, Bl,k, A, l);
11: end while
12: Bl ← Bl,k;
13: end for
14: Unwarp I1 and I2 using Eqs. (2) and (3)

E1 ← unwarp(I1, Blmax);
E2 ← unwarp(I2, Blmax);

4. EXPERIMENTAL RESULTS

This section presents the data acquisition and pre-processing,
and then discusses the results.

4.1. Experimental methods

EPI fMRI data from 3 healthy subjects (1 F and 2 M) were
acquired using a 2-D single-shot GRE EPI sequence in a 3T
scanner with a 32-channel head coil, TR = 3 s, and TE = 30
ms. An FOV of 144 mm× 192 mm, matrix size of 144×192,
36 ascending and interleaved slices (1 mm thickness) resulted
in images with 1 mm isotropic resolution. Subjects viewed
a visual stimulus, while half of the scans was acquired with
the left-to-right (LR) or right-to-left (RL) blip. This resulted
in pairs of scans with reversed patterns of distortions in the
PE direction. For each subject, a T1w anatomy image of the
whole brain was acquired.

In a preliminary step, all acquired fMRI data were mo-
tion and slice scan time corrected using tools in the Statistical
Parametric Mapping (SPM 12) package [23]. The T1w align-
ment image of each subject was created by aligning the T1w
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LR image defor. Corrected LR Mag. wins. RL image defor. Corrected RL
Fig. 1. Results of HySCO
(Row 1) and AISAC (Row 2).
Columns 1 and 4 show the
grid of estimated deforma-
tion. Columns 2 and 5 show
the corrected LR and RL im-
ages, respectively. Column
3 shows magnification of the
window in the second col-
umn focusing on the shadow
artifact.

HySCO

AISAC

HySCO correction AISAC correction

Fig. 2. Left-hemisphere surface and visual field maps of Sub-
ject 3. Circles indicate the areas where the maps differ.

image to an average of two oppositely-distorted images of the
subject, through SPM’s co-registration procedure [24].

In the implementation of the corrections, a four-level im-
age representation, with matrix sizes of 18×24×5, 36×48×9,
72 × 96 × 18, and 144 × 192 × 36, were performed. Aver-
age NGF measurements between the anatomy image and each
corrected image were computed for comparison.

The proposed method with the anatomy-based regulariza-
tion term was compared to HySCO, obtained by setting γ = 0
in Eq. (11). By implementing HySCO on a validation dataset
with varied ranges, the α and β were chosen as 30 and 50,
respectively, with the best measures of the SSD between cor-
rected images and NGF similarity between the anatomy and
corrected images. The γ was set as 75000 after implementing
AISAC with the selected α and β while varying value of γ.

4.2. Results and analysis

Table 1 summarizes the mean and standard deviation of NGF
similarity measures. The results indicate that AISAC achieves
a quite similar similarity rating between corrected images and

the anatomy image in comparison to that of HySCO.

Table 1. Mean and standard deviation of NGF measures for
three corrected fMRI datasets.

BARS
Datasets

Pairs of
images

HySCO
(mean ± std)

AISAC (proposed)
(mean ± std)

Subject 1 376 0.49938 ± 0.00006 0.49930 ± 0.00007
Subject 2 376 0.49952 ± 0.00007 0.49951 ± 0.00007
Subject 3 376 0.49886 ± 0.00023 0.49880 ± 0.00024
Average - 0.49925 ± 0.00012 0.49920 ± 0.00012

Bold numbers indicate the best entry.

Figure 1 shows results of HySCO and AISAC, given the
same pair of input images. Importantly, the AISAC algorithm
reduces the shadow artifact seen with HySCO (see Column3).
This is likely due to the deformation of AISAC being smaller
than that of HySCO (see Columns 1 and 4). This suggests that
the inclusion of the anatomy image adequately moderates the
deformation.

The corrected fMRI images of Subject 3 are analysed us-
ing a pRF model, resulting in visual field maps [2]. pRF
model results produced by AISAC corrections overall provide
a higher explained variance and smaller artifacts in early vi-
sual areas than those of HySCO corrections (see circles in
Fig. 2). The pRF model results further corroborate that the
information provided by T1w images is helpful in tuning the
correction. Retinotopic mapping data was chosen here to val-
idate the methods, however using the anatomy image as a
ground-truth for correcting and guiding SAs could readily be
applied to EPIs collected for other experimental paradigms.

5. CONCLUSIONS

This paper proposed a novel algorithm for correcting the SAs
in high-resolution fMRI images. The proposed method uses
the morphology information of the T1w anatomy image to
regularize the deformation. This ensures that the corrected
images adhere to the correct brain structure. The experimen-
tal results demonstrate the accuracy and efficiency of the pro-
posed method on high-resolution images. It also demonstrates
the feasibility of the method for fMRI data analysis in future
research.
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