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ABSTRACT
The state-of-the-art algorithms of determined blind source separa-
tion (BSS) methods based on the independent component analysis
(ICA) have gained computational efficiency by the majorization-
minimization (MM) principle with a price of losing flexibility. That
is, replacing and comparing different source models are not easy in
such MM-based framework because it requires efforts to derive a
new algorithm each time when one changes the model. In this paper,
a general framework for obtaining an ICA-based BSS algorithm is
proposed so that a source model can easily be replaced because only
a single line of the algorithm must be modified. A sparsity-based ex-
tension of the independent vector analysis and a low-rankness-based
BSS model using the nuclear norm are also proposed to demonstrate
the simplicity and easiness of the proposed framework.

Index Terms— Independence-based separation, frequency do-
main independent component analysis (FDICA), independent vector
analysis (IVA), primal-dual splitting algorithm, proximity operator.

1. INTRODUCTION

Blind source separation (BSS) is methodology for recovering source
signals from multiple mixtures without any knowledge about the
mixing system. Let a convolutive mixing process be approximated
in time-frequency domain as

x[t, f ] ≈ A[f ]s[t, f ], (1)

where x = [x1, x2, . . . xM ]T is an observation obtained by M mi-
crophones, s = [s1, s2, . . . sN ]T is a source signal to be recovered,
A[f ] is anM×N mixing matrix, and t and f are indices of time and
frequency, respectively. Then, the aim of BSS is to recoverN source
signals s from the mixtures x. In a determined or overdetermined
situation (M ≥ N ), many of the BSS problems are formulated as
an estimation problem of finding an N ×M demixing matrix W [f ]
which is a left inverse of A[f ] (i.e., W [f ]A[f ] = I), and the source
signals are recovered by simple multiplication:

W [f ]x[t, f ] ≈W [f ]A[f ]s[t, f ] = s[t, f ]. (2)

For the sake of simplicity, only a determined situation (M =N ) is
considered in this paper.

For estimating a demixing matrix W [f ], statistical indepen-
dence between source signals is often assumed that leads to a
family of independence-based BSS algorithms. Arguably, indepen-
dent component analysis (ICA) [1] applied in frequency domain
(FDICA) [2–6] is one of the most famous methods among them.
However, FDICA suffers from the so-called permutation prob-
lem [7–10], and thus some recent developments on BSS aim to
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avoid it by considering more sophisticated models of source signals.
For instance, independent vector analysis (IVA) [11–13] assumes
co-occurrence among the frequency components in each source, and
independent low-rank matrix analysis (ILRMA) [14–16] assumes
low-rankness on spectrogram of each source. The key to success
of these methods is to incorporate prior knowledge of source sig-
nals into their formulations. That is, improvement brought by these
methods relies on the preciseness of their source models. Therefore,
seeking a better model is the important process for developing a
novel and effective BSS method.

However, recent algorithms [16–18] cannot be applied to a
different source model directly because they are specialized to
each method. These state-of-the-art algorithms are based on the
majorization-minimization (MM) principle which requires specially
designed upper-bound of the objective functions. That is, one has to
derive a new algorithm each time as the source model is modified.
Therefore, it may take a lot of time to examine a new source model
especially when the model is a complicated one. If a single algo-
rithm can handle a large number of source models without effort,
discovering a better source model should become much easier that
possibly boosts the development of BSS.

In this paper, a flexible framework for independence-based BSS
is proposed based on a proximal splitting algorithm [19–22]. The
usefulness of the splitting algorithm comes from its capability of
splitting an optimization problem into several easier subproblems
which are handled by the proximity operators. We take advantage of
this feature to split the ICA-based BSS problem into two parts so that
different source models can easily be combined by modifying only
a single line of the algorithm. The proposed framework is tested
by introducing three new source models (a sparsity-based extension
of IVA, a low-rankness-based model using the nuclear norm, and a
sparsity-based extension of the low-rank model), and potentiality of
the proposed method is indicated by the result.

2. INDEPENDENCE-BASED BSS

As introduced in the previous section, independence-based BSS
methods aim to estimate M ×M demixing matrices {W [f ]}Ff=1

which approximately recover the source signals from the observa-
tions as W [f ]x[t, f ] ≈ s[t, f ]. Many of them fall into a minimiza-
tion problem of the following form:

Minimize
{W [f ]}F

f=1

P(W [f ]x[t, f ]) −
F∑
f=1

log |det(W [f ])|, (3)

where P is a real-valued penalty function corresponding to the
source model. For example, with some constant C,

P(y[t, f ]) = C ‖y[t, f ]‖1 = C

M∑
m=1

T∑
t=1

F∑
f=1

|ym[t, f ]| (4)
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recovers the traditional FDICA with the Laplace distribution as the
source model (which is separable for each f ), and

P(y[t, f ]) = C ‖y[t, f ]‖2,1 = C

M∑
m=1

T∑
t=1

( F∑
f=1

|ym[t, f ]|2
)1

2

(5)

obtains IVA whose source model is the spherical Laplace distribu-
tion. ILRMA can also be interpreted as Eq. (3) with

P(y[t, f ]) = C

M∑
m=1

DR(ym[t, f ]), (6)

where DR(ym[t, f ]) is a measure of low-rankness based on the
Itakura–Saito non-negative matrix factorization (IS-NMF) [23]:

DR(ym[t, f ]) = (7)

min
ϕ
[m]
f,r
≥0,ψ

[m]
r,t ≥0

T∑
t=1

F∑
f=1

(
|ym[t, f ]|2∑R
r=1ϕ

[m]
f,rψ

[m]
r,t

+ log

R∑
r=1

ϕ
[m]
f,rψ

[m]
r,t

)
.

From this perspective, it is clear that the difference of performance
among these methods is owing to goodness of the penalty function
P . Therefore, performance of a BSS method can be improved by
finding a better source model and the corresponding penalty func-
tion P . For seeking a better model, it is convenient to have a single
algorithm that can handle a large number of source models without
spending time for its derivation.

3. PROPOSED FRAMEWORK

In this section, a general algorithm for solving the BSS problems in
the form of Eq. (3) is proposed by applying a primal-dual splitting
algorithm to the reformulated version of Eq. (3).

3.1. Primal-dual splitting algorithm

Let us consider a minimization problem of the form:

Minimize
w

g(w) + h(Lw), (8)

where g and h are proper lower-semicontinuous convex functions,
and L is a matrix. A primal-dual splitting algorithm [21] solves this
problem by iterating the following procedure1:

w̃ = proxµ1g

[
w[k] − µ1µ2L

Hy[k]
]
,

z = y[k] + L(2w̃ −w[k]),

ỹ = z− proxh/µ2

[
z
]
,

(w[k+1],y[k+1]) = α(w̃, ỹ) + (1− α)(w[k],y[k]),

(9)

where µ1 > 0 and µ2 > 0 are step sizes, and 2 > α > 0 is a re-
laxation factor which can adjust the speed of convergence (α= 1 is
the standard speed, and α>1 accelerates and α<1 slows down the
algorithm). The important feature of this algorithm is that each func-
tion in the problem is handled through the proximity operator [20],

proxµg[y] = arg min
z

[
g(z) +

1

2µ
‖y − z‖22

]
, (10)

1For the sake of simplicity, details of the algorithm are omitted in this
paper. The reader may refer to [21] and references therein for detailed ex-
planations and the condition for convergence. Note that, although several
primal-dual algorithms can handle more complicated problem than Eq. (8),
this paper only focus on that form because it is sufficient for the proposal.

which accepts not only smooth functions but also non-differentiable
functions, including sparsity inducing norms in Eqs. (4) and (5), and
non-finite functions such as − log in Eq. (3). That is, difficulty as-
sociated with properties of the functions are eliminated within the
proximity operator thanks to the proximity term. Therefore, diffi-
culty of an optimization problem of the form Eq. (8) only depends
on computational complexity of the corresponding proximity opera-
tors. Fortunately, proximity operators of several functions related to
ICA-based BSS can be computed quite efficiently as follows [19,20]:

prox−µ log[ y ] =
y +

√
y2 + 4µ

2
, (11)(

proxµ‖·‖1 [y]
)
m

[t, f ] =

(
1− µ

|ym[t, f ]|

)
+

ym[t, f ], (12)(
proxµ‖·‖2,1 [y]

)
m

[t, f ] =(
1− µ

(
∑F
f=1 |ym[t, f ]|2)

1
2

)
+

ym[t, f ], (13)

where (·)+ = max{0, ·}.

3.2. Reformulating optimization problem of ICA-based BSS

To apply the primal-dual splitting algorithm, Eq. (3) is reformulated
into the form of Eq. (8). Firstly, for considering the proximity op-
erator, the second term is modified. Since determinant of a matrix
can be expressed in terms of the singular values as |det(W [f ])| =∏M
m=1 σm(W [f ]), Eq. (3) can be rewritten as follows2:

Minimize
{W [f ]}F

f=1

P(W [f ]x[t, f ]) −
F∑
f=1

M∑
m=1

log σm(W [f ]), (14)

where σm(W [f ]) is the mth singular value of W [f ].
Then, the optimization variables {W [f ]}Ff=1 are vectorized to

form a single vector. Let w be an M2F -dimensional vector corre-
sponding to the demixing filters {W [f ]}Ff=1,

w = [w[1]T ,w[2]T , . . . ,w[F ]T ]T ,
(
w[f ] = V(W [f ])

)
(15)

where V is a linear operator converting a matrix into a vector,

V(W [f ])=[W1,1[f ], . . . ,W1,M [f ],W2,1[f ], . . . ,WM,M [f ]]T, (16)

and letM be a linear operator converting it back into the matrix,

M(w)[f ] = W [f ], (17)

which will be used as w[f ] = V(M(w[f ])) = V(M(w)[f ]). With
these notations, Eq. (14) can be expressed as follows:

Minimize
w

P(Xw) −
F∑
f=1

M∑
m=1

log σm(M(w)[f ]), (18)

where X is a matrix constructed from the observed data x[t, f ] as

X = blkdiag(χ[1],χ[2], . . . ,χ[F ]), (19)
χ[f ] = blkdiag(χ[f ], χ[f ], . . . , χ[f ]), (M times) (20)
χ[f ] = [τ1[f ], τ2[f ], . . . , τM [f ]], (21)

τm[f ] = [xm[1, f ], xm[2, f ], . . . , xm[T, f ]]T , (22)

2Note that, while Eq. (3) is only defined for square matrices, the extended
formulation in Eq. (14) allows rectangular demixing matrices (i.e., N 6=M ).
Therefore, the proposed method does not require the pre-processing method
using principle component analysis (PCA) in an over-determined situation,
which might improve the performance as discussed in [15].
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blkdiag(·) is an operator constructing a block-diagonal matrix by
concatenating inputted matrices diagonally, τm[f ] is T ×1, χ[f ] is
T×M , χ[f ] is MT×M2, and X is FMT×FM2.

Let the second term in Eq. (18) be shortly denoted by I:

I(w) = −
F∑
f=1

M∑
m=1

log σm(M(w)[f ]). (23)

Then, Eq. (18) can be rewritten as follows:

Minimize
w

I(w) + P(Xw), (24)

which is in the same form of Eq. (8).

3.3. Proposed algorithm

Since the BSS problem is reformulated into the form of Eq. (8), the
primal-dual splitting algorithm in Eq. (9) can be applied to it if the
proximity operator of each function is efficiently computable.

It is known that a proximity operator of an orthogonally invari-
ant function can be evaluated by applying the corresponding prox-
imity operator to the singular values of the matrix [20]. By regarding
− log σm in Eq. (23) as − log |σm|, the proximity operator of I(w)
is obtained as the similar form to the singular value thresholding:

(proxµI [w])[f ] = V(U Σ̃(M(w)[f ])V H), (25)

where W = UΣV H is the singular value decomposition of W ,

Σ̃(W ) = diag(prox−µlog[σ1(W )], . . . , prox−µlog[σM (W )]),
(26)

prox−µlog[·] is in Eq. (11), and diag(·) is the operator constructing
a diagonal matrix from inputted scalars. In other words, applying
the proximity operator of−µ log to each singular value ofW [f ], for
each frequency independently, gives proxµI [·]. It is worth mention-
ing that this operation is stable because it does not magnify ‖w‖2
much [see Eq. (11)] in contrast to MM algorithms which involve
inversions of matrices that sometimes lead to instability.

By using Eq. (25) as the main building block, the primal-dual
splitting algorithm for BSS problems is obtained as in Algorithm 1.
In the 6th line, the proximity operator of P is required. For FDICA
and IVA in the form of Eqs. (4) and (5), the proximity operators are
given in Eqs. (12) and (13), respectively. Any other penalty function
P can be incorporated by only changing proxP/µ2

[·] in that line,
and therefore this algorithm can be used to test performance of sev-
eral source models without efforts on modifying the code. Note that
an iterative algorithm can be used to evaluate proxP/µ2

[·] since it
is defined through the optimization problem in Eq. (10). That is, it
is still possible to apply the proposed algorithm even when the cor-
responding proxP/µ2

[·] does not admit a closed form solution. For
example, the penalty function of ILRMA in Eq. (6) yields the opti-
mization problem similar to IS-NMF which could be solved by the
existing algorithms. Therefore, by using the proposed algorithm, in-
corporating existing source models into ICA-based BSS should be
easy if the computational complexity is not a concern.

3.4. Proposed algorithm with multiple penalty functions

A source model consists of two or more penalty functions,

Minimize
w

I(w) +

Q∑
q=1

Pq(Xw), (27)

Algorithm 1 PDS-BSS

1: Input: X , w[1], y[1], µ1, µ2, α
2: Output: w[K+1]

3: for k = 1, . . . ,K do
4: w̃ = proxµ1I [ w[k] − µ1µ2X

Hy[k] ]

5: z = y[k] +X(2w̃ −w[k])

6: ỹ = z− prox 1
µ2
P [ z ]

7: y[k+1] = αỹ + (1− α)y[k]

8: w[k+1] = αw̃ + (1− α)w[k]

9: end for

Algorithm 2 PDS-BSS-multiPenalty

1: Input: X , w[1], y[1]
1 , . . . ,y

[1]
Q , µ1, µ2, α

2: Output: w[K+1]

3: for k = 1, . . . ,K do
4: w̃ = proxµ1I [ w[k] − µ1µ2X

H
(∑Q

q=1 y
[k]
q

)
]

5: for q = 1, . . . , Q do
6: zq = y

[k]
q +X(2w̃ −w[k])

7: ỹq = zq − prox 1
µ2
Pq [ zq ]

8: y
[k+1]
q = αỹq + (1− α)y

[k]
q

9: end for
10: w[k+1] = αw̃ + (1− α)w[k]

11: end for

can also be handled by the proposed algorithm. Algorithm 1 is eas-
ily extended to deal with this problem by vertically concatenating the
matrix X as L = [XT , . . . , XT ]T (Q times). Then, the primal-dual
splitting algorithm for Eq. (27) can be derived by simply applying
Eq. (9) to its vertically concatenated version, which is summarized
in Algorithm 2. As presented in the algorithm, each penalty function
Pq is independently handled by the corresponding proximity opera-
tor. Therefore, this algorithm is applicable to a complicated source
model consisting of several simple functions {Pq}Qq=1. Such mod-
els may include sparse+low-rank model of robust PCA [24, 25] and
multi-group sparsity of harmonic/percussive source separation [26].

3.5. Normalization of data matrix

As introduced in Section 2, an ICA-based BSS method usually has a
specific constant C which is derived from the corresponding statis-
tical model. Although this constant is important, it may not be easy
to derive C for some non-standard models. To circumvent this com-
plication, a normalization method convenient for the proposed algo-
rithm is considered here. Since the step sizes µ1 and µ2 in Eq. (9)
should be chosen to satisfy µ1µ2‖L‖2s ≤ 1 [21]3, they can be set to
one if ‖L‖s = 1, where ‖ · ‖s denotes the spectral norm. That is, if
the data matrix X is normalized as

X̃ = X/(
√
Q ‖X‖s), (28)

then the step sizes can be set to µ1 = 1 and µ2 = 1. Remind that
α can be arbitrarily chosen from (0, 2) [21] or chosen as 1 which
bypasses the last line of Eq. (9). Thus, with this normalization, there
is nothing to worry about in regards to the choice of the parameters.

3Because of the − log σm term, the problem in Eq. (24) is non-convex,
which requires an additional analysis for convergence. Such analysis will be
considered in the future work, and thus we omitted theoretical details in this
paper. Nevertheless, experimental results in the next section show that this
choice of step sizes, derived for convex problems, seems work properly.
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Fig. 1. Comparison between AuxIVA [18] and the proposed algo-
rithm. The black lines with circles denotes AuxIVA, while the blue
lines with cross marks denotes the proposed algorithm.

4. EXPERIMENTS

The proposed algorithm was tested by applying it to speech mix-
tures. The database used in the experiment was a part of SiSEC2011
[27] called dev1 of the UND task4. Live recording (liverec)
of four female speech sources recorded by two microphones (5 cm
spacing) was chosen as the test data. For making the problem de-
termined, two pairs of sources were considered: Mixture A consists
of two sources arrived from −50◦ and 45◦ and Mixture B consists
of two sources arrived from −10◦ and 15◦, where 0◦ corresponds
to the normal direction to the microphone array. The reverberation
time was 130 ms, and 128-ms-long Hann window with 64-ms shift
was used. The initial value of demixing matrices w[1] was set to the
identity matrices (W [f ] = I for all f ). The parameters in the pro-
posed algorithm were µ1 = 1, µ2 = 1, and α= 1.75, and all initial
values of y in Algorithms 1 and 2 were set to the zero vector.

4.1. Comparison with MM algorithm

In order to compare with the state-of-the-art MM algorithm in [18],
the proposed algorithm was applied to IVA whose source model is
the spherical Laplace distribution:

Minimize
w

I(w) + ‖X̃w‖2,1 , (29)

where ‖ · ‖2,1 is in Eq. (5). By simply incorporating the proximity
operator in Eq. (13) to Algorithm 1, the proposed method is adapted
to this problem. The performance at each iteration count was mea-
sured by the signal-to-distortion ratio (SDR) [28]. In the MM algo-
rithm [18] which is denoted by AuxIVA, the statistical constant C
in Eq. (5) was correctly considered.

Figure 1 shows the results of IVA solved by AuxIVA and the
proposed algorithm. AuxIVA reached rapidly to specific values of
SDR, where 50 or 100 iteration seems enough for these cases. Al-
though the proposed algorithm required more iterations, it reached to
the same values with several hundreds iterations. Running time per
iteration of each method was 80.8 ms for AuxIVA and 47.4 ms for
the proposed algorithm (with Core i5-7200U processor and MAT-
LAB 2017a). This result indicates that the proposed algorithm with
the normalization rule in Section 3.5 properly works as the state-of-
the-art algorithm with comparable running time.

4.2. Application to several source models

To demonstrate simplicity and easiness of the proposed algorithm,
three additional formulations with different source models are con-
sidered here. From Eq. (29), it can be clearly seen that IVA attempts

4Available at http://sisec2011.wiki.irisa.fr

0 200 400 600 800 1000
Number of iterations

5.5

6

6.5

SD
R

 im
pr

ov
em

en
t [

dB
]

0 200 400 600 800 1000
Number of iterations

3

3.5

4

4.5

5

5.5

6

SD
R

 im
pr

ov
em

en
t [

dB
]

Mixture A Mixture B

sparse IVA

low-rank

sparse & low-rank

low-rank

sparse & low-rank

sparse IVA

Fig. 2. Performance of several models solved by the proposed algo-
rithm. Each curve represents each model proposed in Section 4.2,
while black and blue lines are the ones from Fig. 1 for comparison.

to sparsify the spectrograms of separated signals by inducing group
sparsity through ‖ · ‖2,1, while I preventsW [f ] from being rank de-
ficient. Any other penalty function possibly improves the accuracy
if it promotes a property of source signals appropriately [29].

One of such properties is the low-rankness of a spectrogram [14–
16]. Then, it may be natural to consider the nuclear norm ‖ · ‖∗
because it is well-known as a function inducing low-rankness of a
matrix. Therefore, we propose the following model (low-rank):

Minimize
w

I(w) + ‖M∗(X̃w)‖∗ , (30)

whereM∗ is the operator converting the vector X̃w into the corre-
sponding matrices (spectrograms of the separated signals), and the
nuclear norm is evaluated for each spectrogram. The proximity op-
erator of ‖ · ‖∗ is the famous singular-value thresholding [20] which
also easily adapts the proposed algorithm to this problem.

Further, it can be presumed that an additional sparsity-inducing
term improves separation performance. Thus, to demonstrate the
benefit of flexibility of the proposed algorithm, sparse IVA,

Minimize
w

I(w) + ‖X̃w‖2,1 + λ ‖X̃w‖1 , (31)

and a sparse & low-rank model,

Minimize
w

I(w) + ‖M∗(X̃w)‖∗ + λ ‖X̃w‖1 , (32)

are also proposed, where λ> 0 is a weighting parameter balancing
the influence of the norms.

Figure 2 shows the results of these three models solved by the
proposed algorithm5 (λ = 0.002) together with IVA in Fig. 1 for
comparison. For both mixtures, sparse IVA and sparse & low-rank
models resulted in higher SDR than IVA. Although the modification
of the proposed algorithm was able to be done within a few min-
utes, we were able to test the performance of these four BSS models.
This fact illustrates the advantage of the proposal in this paper which
could contribute to discovery of a new BSS model.

5. CONCLUSIONS

For solving ICA-based BSS problems, this paper proposed a general
algorithm which admits a complicated source model consisting of
multiple penalty terms. It can handle a large number of models with
a slight modification that allows quick investigation of the model’s
performance. For illustrative examples, three models based on spar-
sity and low-rankness of the spectrograms were also proposed.

5For this experiment,
√
2 in Eq. (28) was omitted for Eqs. (31) and (32)

in order to set the trajectories of the four models to the similar ones for easier
comparison. It should not be omitted in practice for the sake of reliability.
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