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ABSTRACT

Audio source separation is an important problem for many audio ap-
plications. Independent low-rank matrix analysis (ILRMA) is a re-
cently proposed algorithm that employs the statistical independence
between sources and the low-rankness of the time-frequency struc-
ture in each source. As reported in this paper, we have developed a
new framework that enables us to introduce a spatial regularization
of the demixing matrix in ILRMA. Since the conventional optimiza-
tion cannot be applied to this regularized ILRMA, we derive a novel
approach based on vectorwise coordinate descent, which does not
require a step-size parameter and guarantees convergence. In exper-
iments, ILRMA with beamforming-based regularization is evaluated
as an application of the proposed framework.

Index Terms— Audio source separation, independent low-
rank matrix analysis, spatial regularization, vectorwise coordinate
descent.

1. INTRODUCTION

Audio source separation is a technique for estimating individual
audio sources from an observed mixture signal. In particular,
blind source separation (BSS) aims to separate the sources with-
out knowing their spatial arrangements, and many methods based on
frequency-domain independent component analysis (FDICA) have
been proposed so far [1, 2, 3, 4]. FDICA estimates the frequency-
wise demixing matrix by assuming statistical independence between
sources, where the permutation problem (alignment of estimated
components over all frequency bins) must be solved. Indepen-
dent vector analysis (IVA) [5, 6] and independent low-rank matrix
analysis (ILRMA) [7, 8] are more sophisticated approaches that
simultaneously estimate the demixing matrix and solve the per-
mutation problem. IVA employs a generative model of source
frequency vectors, which ensures higher-order correlation among
frequency components. ILRMA extends the vector model to a low-
rank time-frequency matrix model incorporating nonnegative matrix
factorization (NMF) [9, 10]. Since co-occurrence among frequency
or time-frequency slots in each source is ensured, the permutation
problem can be avoided. Also, for IVA and ILRMA, a fast and stable
optimization algorithm called iterative projection (IP) [11] has been
derived that does not require a step-size parameter and guarantees
theoretical convergence. However, IVA sometimes causes the block
permutation problem [12], which is a misalignment in the low- and
high-frequency bands, and ILRMA often fails to separate speech
mixtures because the spectrogram of speech signals is not low-rank
and the NMF optimization is trapped at a poor local minimum [7].
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ogy Foundation and JSPS KAKENHI Grant Numbers JP17H06101 and
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In FDICA, a regularization term of the demixing matrix is often
introduced into the cost function to improve the separation accuracy
or increase the speed of optimization. For example, in [4, 13, 14, 15],
a spatial regularizer based on a fixed beamforming technique [16]
was introduced, where it was assumed that either or both the micro-
phone spacing and the locations of sources are known. In [17], a
penalty term that solves the scale ambiguity of the demixing matrix
was imposed. In these methods, the optimization algorithm is de-
rived by a naive gradient-based method. Since the regularizer is lin-
early combined with the main cost function in FDICA, the gradient-
based update rules can be easily implemented by concatenating the
gradients for both the cost and the regularizer. However, its conver-
gence is not guaranteed and the step-size parameter must be carefully
tuned. Regarding IP-based algorithms, to the best of our knowledge,
the update rules of the ICA or IVA cost function with an arbitrary
regularizer have not yet been derived.

In this paper, we develop a new IP-like optimization algorithm
called vectorwise coordinate descent (VCD) for ILRMA, which can
theoretically guarantee convergence even if the regularizer of the
demixing matrix is imposed on the original cost function. VCD
can optimize matrix variables in a vectorwise manner, which is per-
formed by a computationally efficient closed-form solution. On the
basis of this new framework, in this paper we introduce a spatial
regularizer obtained by the beamforming technique into ILRMA and
show that the spatial regularizer can markedly improve both the sep-
aration accuracy and the stability of the optimization in the case of
speech mixture separation. Also, the proposed algorithm can be
used not only for a beamforming-based regularizer but also for many
types of regularization of the demixing matrix. This paper provides
an example of the application of this algorithm when the microphone
spacing is known but the source locations are unknown in advance.

2. CONVENTIONAL ILRMA

2.1. Formulation
Let N and M be the numbers of sources and microphones, respec-
tively. The complex-valued short-time Fourier transform (STFT) co-
efficients of source, observed, and separated signals are defined as

sij = (sij,1, . . . , sij,n, . . . , sij,N )T, (1)

xij = (xij,1, . . . , xij,m, . . . , xij,M )T, (2)

yij = (yij,1, . . . , yij,n, . . . , yij,N )T, (3)

where i = 1, . . . , I; j = 1, . . . , J ; n = 1, . . . , N ; and m =
1, . . . ,M are the integral indexes of the frequency bins, time
frames, sources, and channels, respectively, and T denotes a trans-
pose. When the mixing system is time-invariant and the window
length in the STFT is sufficiently longer than the impulse responses
between sources and microphones, the following instantaneous
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Fig. 1. Principle of source separation based on ILRMA.

mixture model holds in a frequency domain:

xij = Aisij , (4)

where Ai is the mixing matrix. This assumption of a mixing sys-
tem is often called the rank-1 spatial model [18]. If the number of
sources equals the number of channels (M = N ), the demixing
matrix Wi = (wi,1, . . . ,wi,N )H = A−1

i can be defined, where H

denotes a Hermitian transpose, and the separated signals are repre-
sented as

yij = Wixij . (5)

The goal of FDICA, IVA, or ILRMA is to estimate Wi with the
correct source permutations over all frequency bins.

2.2. Cost function
ILRMA [7] is a method unifying IVA and NMF, namely, the demix-
ing matrix Wi is estimated by maximizing the independence be-
tween sources while the power spectrogram of the estimated source
|yij,n|2 = |wH

i,nxij |2 is modeled by the low-rank decomposition
in NMF. Fig. 1 shows the separation mechanism of ILRMA, where
Tn ∈ RI×L≥0 and Vn ∈ RL×J≥0 are the basis and activation matrices
for the nth estimated source, respectively, and L is the number of
bases for the nth source. The demixing matrixWi and the separated
signal yij are optimized so that the spectrogram of each source tends
to be a low-rank matrix. ILRMA can avoid the permutation prob-
lem by assuming co-occurrence among the time-frequency slots of
the same source and restricting them to be a low-rank matrix repre-
sented as TnVn. It has been revealed that ILRMA is equivalent to
multichannel NMF (MNMF) [19, 20, 21] only when the rank-1 spa-
tial model (4) is assumed, which yields a more stable and efficient
algorithm than MNMF.

The cost function in ILRMA is defined as follows:

J =
∑
i

(∑
n

wH
i,nDi,nwi,n − log | detWi|2

)

+
1

J

∑
i,j,n

log
∑
l

til,nvlj,n, (6)

Di,n =
1

J

∑
j

xijx
H
ij∑

l til,nvlj,n
, (7)

where l = 1, . . . , L is the integral index of the bases and til,n and
vlj,n are the nonnegative elements of Tn and Vn, respectively. The
rank-L matrix TnVn corresponds to the NMF decomposition and
represents a power spectrogram model of the nth source. The first
and second terms in (6) are equivalent to the cost function in IVA,
which evaluates the independence between sources, and the first and
third terms in (6) are equivalent to the cost function in NMF based
on Itakura–Saito divergence [22]. Regarding the demixing matrix,
the cost function (6) is the sum of the quadratic form ofwi,n and the
negative log-determinant of Wi. This type of cost function can be
efficiently optimized by IP [11, 7], which is given by

ui,n = D−1
i,nW

−1
i en, (8)

wi,n ←
ui,n√

uH
i,nDi,nui,n

, (9)

where en denotes the unit vector with the nth element equal to unity.

3. PROPOSED METHOD
3.1. Motivation
In independence-based BSS, the regularization of wi,n has the
potential to improve its optimization stability. In [4, 13, 14], a
beamforming-based regularizer was imposed to precisely solve the
permutation problem. In [15], a similar regularizer was utilized for
annealing so thatwi,n rapidly converges to a better solution. In [17],
a penalty term of wi,n was added to avoid the scale ambiguity of
the estimated signal yij,n. However, these methods are based on
the gradient-based algorithm without guaranteeing its convergence,
and, to the best of our knowledge, convergence-guaranteed updates
for the regularized optimization problem of wi,n have never been
considered. Motivated by this issue, as reported in this section, we
propose the addition of a regularizer to ILRMA and develop a new
algorithm called VCD that guarantees the convergence without a
step-size parameter.

3.2. Cost function of spatially regularized ILRMA

Let Ŵi = (ŵi,1, . . . , ŵi,N )H be the supervisor of the demixing ma-
trix, and we consider the problem of finding the optimalWi around
Ŵi in ILRMA-based BSS. This problem can be solved by imposing
the regularizer ofwi,n on the original cost function (6) as follows:

JR = J +
∑
i,n

λn‖wi,n − ŵi,n‖2

=
∑
i

[∑
n

(
wH
i,nD̂i,nwi,n − λnŵH

i,nwi,n

− λnwH
i,nŵi,n

)
− log | detWi|2

]
+ C, (10)

where λn is the weight parameter of the regularizer, D̂i,n = Di,n+
λnIN , IN is the N ×N identity matrix, and C denotes terms inde-
pendent ofwi,n. Since (10) includes the linear terms ŵH

i,nwi,n and
wH
i,nŵi,n, IP cannot be applied unlike in the case of (6).

3.3. Derivation of vectorwise coordinate descent
To derive the novel IP-like optimization algorithm for (10), we cal-
culate the partial derivative of (10) w.r.t. w∗i,n, where ∗ denotes the
complex conjugate. Therefore, wi,n in the matrix variable Wi is
cyclically updated, resulting in VCD to find the optimalwi,n with a
computationally efficient closed-form solution.

First, we arrange the term log | detWi|2 in (10) by usingBi =
(bi,1, . . . , bi,N ), which is the adjugate matrix ofWi and defined as

[Bi]pq = (−1)p+qW̆i,qp, (11)

where [Bi]pq is the (p, q) entry ofBi and W̆i,qp is the (q, p) minor
determinant of Wi. Note that the column vector of Bi, bi,n, only
depends on wi,n′ (n′ 6= n) and becomes independent ofwi,n from
its definition. By using the property of cofactor expansion, we obtain
detWi = wH

i,nbi,n. Then, we can calculate the partial derivative of
log | detWi|2 w.r.t. w∗i,n as

∂ log | detWi|2

∂w∗i,n
=
∂ log |wH

i,nbi,n|2

∂w∗i,n
=

bi,n
wH
i,nbi,n

. (12)
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Next, we derive a stationary point of wi,n. By using (12), we
can obtain the partial derivative of JR w.r.t. w∗i,n as follows:

∂JR

∂w∗i,n
= D̂i,nwi,n − λnŵi,n −

bi,n
wH
i,nbi,n

. (13)

From ∂JR/∂w
∗
i,n = 0, we have

wi,n = D̂−1
i,n(βi,nbi,n + λnŵi,n), (14)

where βi,n = 1/(wH
i,nbi,n). From the definition of βi,n, we have

βi,nw
H
i,nbi,n − 1 = 0. (15)

Therefore, we obtain the following equation in βi,n by substituting
(14) into (15):

bHi,nD̂
−1
i,nbi,n|βi,n|

2 + λnŵ
H
i,nD̂

−1
i,nbi,nβi,n − 1 = 0. (16)

Because the first and third terms in (16) are real numbers, the second
term in (16) must satisfy

Im
[
λnŵ

H
i,nD̂

−1
i,nbi,nβi,n

]
= 0. (17)

From βi,n 6= 0 and (17), we have

βi,n = γi,n
(
λnŵ

H
i,nD̂

−1
i,nbi,n

)∗
= γi,nλnb

H
i,nD̂

−1
i,nŵi,n (18)

or

λnŵ
H
i,nD̂

−1
i,nbi,n = 0, (19)

where γi,n ∈ R\{0}. When (18) holds, we can derive a quadratic
equation in γi,n from (16) as follows:

λ2
nb

H
i,nD̂

−1
i,nbi,n|b

H
i,nD̂

−1
i,nŵi,n|

2γ2
i,n

+ λ2
n|bHi,nD̂−1

i,nŵi,n|
2γi,n − 1 = 0. (20)

By substituting the solution γi,n of (20) into (18), we have

βi,n =
λnb

H
i,nD̂

−1
i,nŵi,n

2bHi,nD̂
−1
i,nbi,n

−1±

√√√√1 +
4bHi,nD̂

−1
i,nbi,n

λ2
n|bHi,nD̂

−1
i,nŵi,n|2

 ,

(21)

where the ± sign in (21) should be positive (see Appendix A). On
the other hand, when (19) holds, the solution of (16) becomes

βi,n =
ejφi,n√

bHi,nD̂
−1
i,nbi,n

, (22)

where φi,n ∈ (−π, π] denotes an arbitrary phase and j is the imag-
inary unit. Since φi,n does not change the value of JR, we set φi,n
to satisfy ejφi,n = (detWi)

∗/| detWi|. These solutions of βi,n
give us the minimum of JR w.r.t. wi,n, which guarantee the mono-
tonic nonincrease of JR. From (14), (21), (22), and the relation
bi,n = (detWi)W

−1
i en, the update rules ofwi,n are obtained as

ui,n = D̂−1
i,nW

−1
i en, (23)

ûi,n = λnD̂
−1
i,nŵi,n, (24)

ri,n = uH
i,nD̂i,nui,n, (25)

r̂i,n = uH
i,nD̂i,nûi,n, (26)

wi,n ←



ui,n√
ri,n

+ ûi,n (if r̂i,n = 0)

r̂i,n
2ri,n

(
−1 +

√
1 +

4ri,n
|r̂i,n|2

)
ui,n + ûi,n

(otherwise)

. (27)

For the NMF source model with Tn and Vn, the update rules pro-
posed in [7] or their generalized form proposed in [23] can be used.

3.4. Regularization based on null beamforming
As an application of the spatially regularized ILRMA proposed in
the previous section, similar to [15], the utilization of null beam-
forming (NBF) can be considered. The steering vector of a given
source direction θn can be represented as

hi,n(θn) = e−j
(M−1)ψi,n

2 [1, ejψi,n , . . . , ej(M−1)ψi,n ]T, (28)

ψi,n =
2π(i− 1)fsd

cNF
sin θn, (29)

where fs is the sampling frequency, d is the microphone spacing, c is
the sound speed, andNF is the length of Fourier transform. The NBF
coefficients gi,n(θ) that suppress the sound arriving from direction
θn are defined as

gi,n(θ) = (detHi(θ))Hi(θ)−Ten, (30)

where θ = (θ1, . . . , θN )T andHi(θ) = (hi,1(θ1), . . . ,hi,N (θN )).
In this paper, we consider the situation that only the microphone
spacing d is known and the true directions of the sources θ are
unknown in advance. To obtain the pre-estimated directions θ̄ =
(θ̄1, . . . , θ̄N )T, we first apply AuxICA [24] to the observed signal
xij at each frequency, then θ̄ is calculated by applying k-means
clustering to the spatial null directions of wi,n, which is estimated
by AuxICA, for all i and n [4, 25]. The reasons why we use AuxICA
here are as follows: (1) the permutation problem does not matter
in this case because only the source direction need be estimated,
which can be achieved by k-means clustering, and (2) this prepro-
cessing should have a low computational cost without any tuning
parameters. The centroid direction of each cluster corresponds to
θ̄n. Therefore, ŵi,n = gi,n(θ̄)∗ can be used as the NBF-based
supervisor.

The weight parameter of the regularizer in the kth iteration is set
to λn(k) = αn max [0.5− k/K, 0], whereK is the total number of
iterations in ILRMA. This annealing approach improves the separa-
tion speed and accuracy. Note that λn(k) becomes zero in the last
half of the whole iteration because the fixed NBF coefficients do not
provide the best separation result owing to room reverberation.

4. EXPERIMENT
4.1. Experimental conditions
We conducted experiments on speech separation with two micro-
phones and two sources. We compared the following three methods.

• Initialize Wi with identity matrix and perform conventional
ILRMA (Method 1)

• Obtain θ̄ via AuxICA, initialize Wi with gi,n(θ̄), and per-
form conventional ILRMA (Method 2)

• Obtain θ̄ via AuxICA, initialize Wi with gi,n(θ̄), and per-
form ILRMA with spatial regularizer (Method 3)

Method 2 corresponds to Method 3 when αn = 0. In Method
3, we set αn = {0.1, 0.3, 1, 3, 10}. The observed signals were
produced by convoluting the speech sources shown in Table 1 ob-
tained from the SiSEC2010 dataset [26] and the E2A impulse re-
sponse (RT60 = 300 ms) obtained from the RWCP database [27].
The locations of the two tested sources were (−40◦,+40◦) and
(−40◦,+20◦), where 0◦ corresponds to the normal direction to the
microphone array. The sampling frequency was 16 kHz and the
STFT was performed with a 256-ms-long window and 128 ms shift.
In Method 1, the total number of iterations in ILRMA, K, was set to
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Table 1. Speech sources obtained from SiSEC database
ID Speech name Track name

1 dev1 female4 src 1/src 2
2 dev1 female4 src 3/src 4
3 dev1 male4 src 1/src 2
4 dev1 male4 src 3/src 4

Table 2. Average SDRi [dB], where (θ1, θ2) = (−40◦,+40◦)

Method αn
Number of bases L

1 2 3 5 10 15 20 25 30

1 — 6.07 7.35 6.23 6.26 5.60 5.45 5.14 4.97 5.06

2 0.0 8.04 9.38 10.28 10.95 11.34 11.60 11.67 11.66 11.51

0.1 8.06 9.49 10.62 11.48 11.95 12.34 12.27 12.18 12.18
0.3 8.06 9.76 10.95 12.04 12.36 12.55 12.40 12.34 12.25

3 1.0 8.06 10.13 11.23 12.16 12.40 12.62 12.35 12.43 12.27
3.0 8.06 10.43 11.40 12.07 12.22 12.40 12.23 12.20 12.04

10.0 8.06 10.43 11.26 11.86 11.86 12.02 11.71 11.79 11.59

100. In Methods 2 and 3, AuxICA with 20 iterations was performed
to obtain θ̄n, then we performed regularized ILRMA with K = 80.
The number of bases, L, was set to {1, 2, 3, 5, 10, 15, 20, 25, 30}.
As the evaluation score, we used the improvement of the signal-to-
distortion ratio (SDRi) [28]. The initial values of Tn and Vn were
generated from uniform random values. In addition, we conducted
a comparison with the state-of-the-art BSS methods AuxIVA [11],
MNMF [21], and t-MNMF [29]. AuxIVA was performed with 100
iterations, whereas MNMF and t-MNMF were performed with 200
iterations. The total number of bases in MNMF and t-MNMF was
set to 40. The parameter ν in t-MNMF was set to one (i.e., Cauchy-
distribution-based MNMF).

4.2. Results
Tables 2 and 3 show the average results when the source locations
are (−40◦,+40◦) and (−40◦,+20◦), respectively. In these tables,
we show the average results for all the sources. In Method 1, we can-
not obtain satisfactory performance when the number of bases,L, in-
creases. This is due to the difficulty of speech spectrogram modeling
using the NMF model, as mentioned in [7]. The utilization of NBF
(Methods 2 and 3) can markedly improve the separation accuracy,
and the NMF source model is correctly estimated even if we increase
L. In addition, the spatial regularizer (Method 3) provides further
improvement of more than 1 dB compared with Method 2. Fig. 2
shows the typical separation results in terms of the average SDRi and
their standard deviations for 20 trials with various random values for
Tn and Vn. We can confirm that the separation becomes stable ow-
ing to the proposed spatial regularizer. Table 4 shows a comparison
of the SDRi between Methods 1 and 3 and the state-of-the-art meth-
ods, where L was set to two in Method 1 and 15 in Method 3. Also,
αn was 1.0 in Method 3. Method 3 achieves the best SDRi perfor-
mance for both source locations. The relative computational times
per iteration normalized by Method 1 (IP) were 1.61 for Method 3
(VCD), 61.99 for MNMF, and 71.95 for t-MNMF, where the cal-
culations were performed with Intel Core i9-7900X processor and
MATLAB 9.1. This indicates that VCD does not require much ad-
ditional computations compared with IP and sufficiently faster than
MNMFs. In summary, all the results show the efficacy of the pro-
posed approach.

5. CONCLUSION

In this paper, we developed a new framework for ILRMA that en-
ables us to introduce a spatial regularizer for the demixing matrix.

Table 3. Average SDRi [dB], where (θ1, θ2) = (−40◦,+20◦)

Method αn
Number of bases L

1 2 3 5 10 15 20 25 30

1 — 3.14 3.51 3.13 3.24 2.86 2.57 2.47 2.15 2.19

2 0.0 7.37 8.41 8.80 9.41 9.63 9.77 9.73 9.77 9.82

0.1 7.32 8.67 9.22 9.89 10.41 10.63 10.68 10.67 10.56
0.3 7.32 8.79 9.57 10.27 10.82 11.04 10.95 11.02 10.91

3 1.0 7.32 9.13 9.89 10.62 10.96 11.10 11.01 11.06 10.98
3.0 7.33 9.24 10.05 10.60 10.86 10.98 10.89 10.93 10.79
10.0 7.33 9.29 10.05 10.57 10.74 10.82 10.76 10.72 10.67

Fig. 2. Average SDRi of src 3 and src 4 in ID2, where (θ1, θ2) =
(−40◦,+40◦) and L = 15.

Table 4. Average SDRi of various BSS methods [dB]

(θ1, θ2) AuxIVA MNMF t-MNMF
ILRMA

(Method 1)
Regularized ILRMA

(Method 3)

(−40◦,+40◦) 3.97 3.84 4.80 7.35 12.62
(−40◦,+20◦) 4.15 3.80 4.46 3.51 11.10

An efficient optimization algorithm, VCD, was derived, which does
not require a step-size parameter and ensures theoretical conver-
gence. NBF-based regularization was newly employed in ILRMA,
and we showed that the proposed approach can improve the separa-
tion accuracy and stability in speech source separation.

Appendix A. SOLUTION OF SIGN AMBIGUITY IN (21)

The terms containingwi,n in JR are

wH
i,nD̂i,nwi,n − λnŵH

i,nwi,n − λnwH
i,nŵi,n − log |wH

i,nbi,n|2.
After the update of wi,n, (13) must be zero. Then we can reformu-
late the above terms as

wH
i,n(D̂i,nwi,n − λnŵi,n)− λnŵH

i,nwi,n − log |wH
i,nbi,n|2

=
wH
i,nbi,n

wH
i,nbi,n

− λnŵH
i,nwi,n − log

∣∣∣∣ 1

βi,n

∣∣∣∣2
= 2 log |βi,n| − λnŵH

i,nwi,n + 1. (31)

By focusing on the first term in (31), we have∣∣∣β(−)
i,n

∣∣∣ > ∣∣∣β(+)
i,n

∣∣∣⇐⇒ log
∣∣∣β(−)
i,n

∣∣∣ > log
∣∣∣β(+)
i,n

∣∣∣ , (32)

where β(+)
i,n or β(−)

i,n denotes the solution of (21) with the sign of +
or −, respectively. Also for the second term in (31), we have

−λnŵH
i,nwi,n = −|r̂i,n|

2

2ri,n

(
−1±

√
1 +

4ri,n
|r̂i,n|2

)
. (33)

The right-hand term of (33) becomes smaller when we take + for the
± ambiguity. From (31)–(33), the + sign must be taken to decrease
JR, and the solution β(+)

i,n corresponds to the global minimum of
(31), which guarantees the monotonic decrease in the VCD.
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