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ABSTRACT When ILRMA was first proposed by Kitamugd al.[11, 12], a

. . . (time-varying) complex Gaussian distribution was used as a source
Independent low-rank matrix analysis (ILRMA), a unified method 0fdistribution. This Gaussian ILRMA can be viewed as a Multichan-

independent vector analysis (IVA) and nonnegative matrix factorizaheI NMF (MNMF [14, 15]), which is a multichannel extension of
tion (NM.F)’ IS a state-of-the-art blind source separation methoq fftakura-Saito NMF [6], rewritten as an optimization problem of the
convolutive mixtures. Although ILRMA provides high separation demixing system. Since the degree of freedom of the model is large

Eer’f\?l\r/lrr;ance forr] music 5|gnals v;ghosel spectri can be_well mcti)delq MNMF, the sensitivity of the optimization of MNMF to the initial

?./ e spgecNh:'ggctrat o not a.V‘:' O‘:V'rt?]r.‘ properttles,tagl MOGodel parameters and the rather large processing time required for
€ling them by NMF 1S not appropriate. In this paper, 1o stably Im'optimization were reported as cumbersome problems [12, 14, 15]
prove the separation performance_ of ”‘RMA_ for speech_ MIXIUIES, 3, the other hand, since ILRMA has fewer parameters than MNMF
source spectrum model in ILRMA is generalized to explicitly mOdeIand can utilize the fast and stable optimization algorithm based on

the strong higher-order correlations between neighboring frequenaqiz]e auxiliary-function-based IVA (AuxIVA [16, 17, 18]), ILRMA

bins of s_pegch _slgnals. 'In addition, mqltlvarlate complex exponentialy, achieve a more efficient and robust separation compared with
power distributions, which are recognized to have high performancRANMF

with IVA, are introduced as source distributions assumed in ILRMA.

: : Recently, in order to improve the stability and the separation per-
Experimental results show the effectiveness of the proposed methad B . - .
over the original ILRMA when separating speech mixtures. ?ormance of NMF and MNMF, distributions with heavier tails than

) o the complex Gaussian distribution have been introduced as source
Index Terms— Blind source separation, independent compo-distributions [7, 8, 9, 10, 19, 20]. As for ILRMA, inspired by the
nent analysis, independent vector analysis, nonnegative matrix fagtydies to extend the source distribution to the complex Student's

torization, multivariate exponential power distribution distribution in NMF [8] and MNMF [19], ILRMA based on the com-
plex Student’st-distribution, calledt-ILRMA, was proposed [13].
1. INTRODUCTION t-ILRMA can realize the Gaussian ILRMA [11, 12] and ILRMA

based on the complex Cauchy distribution, which has a heavy talil

Blind source separation (BSS) is a technique that estimates origas a result of adjusting the degree of freedom parameter in Stu-
nal source signals from a given mixture without any knowledge oﬂent‘st-distribution. However, since the separation performance of
mixing systems or microphone positions. The problem of BSS fot-ILRMA with heavy tails depends on the initial model parameters
convolutive mixtures is generally addressed in the time-frequencind the degree of freedom parameter, it is difficult to stably improve
(TF) domain using the short-term Fourier transform [1]. For thethe separation performance of Gaussian ILRMA [13]. Furthermore,
determined situation where the number of sources is less than érLRMA still uses a low-rank approximation of source spectra by
equal to the number of microphones, frequency-domain independeHsing NMF, and so the model itILRMA is not appropriate for
component analysis (FD-ICA [1]) and independent vector analysi§Peech signals.
(IVA'[2, 3, 4]) are common, and these methods have been applied to In this paper, to stably improve the separation performance of
preprocessing for speech recognition tasks for multiple speakers. ILRMA, we explicitly model in ILRMA the property of speech spec-
FD-ICA and IVA are the methods that perform BSS by re-tra in which the statistical dependencies between neighboring fre-
lying only on independence between source signals as a clue fguency bins are stronger than the dependencies between distant bins.
separation. In recent years, in addition to independence betweérhe attempts to model the above speech property were successful in
sources, efforts to exploit the time-frequency structure of sourcémproving the performance of IVA [21, 22, 23, 24], and we will gen-
signals, or source spectrum, have been made to improve the segralize this approach for ILRMA (see Subsection 2.2). With this
aration performance of FD-ICA and IVA. Among them, low-rank modeling, the proposed ILRMA is expected to alleviate the adverse
approximation of source spectra by using nonnegative matrix faceffect of low-rank modeling of speech spectra in the original IL-
torization (NMF [5, 6, 7, 8, 9, 10]) has received attention and hasRMA, and to stably improve the separation performance. Further-
been incorporated into the spectrum models assumed in FD-ICAore, we generalize the source distribution assumed in Gaussian IL-
and IVA. This approach is called independent low-rank matrix analRMA to multivariate complex exponential power (MEP) distribution
ysis (ILRMA [11, 12, 13]), and it was reported to outperform the (see Subsection 2.3), which is a different extension ftdirRMA.
performance of FD-ICA and IVA when separating music signals,The MEP can represent a distribution with a heavy tail and a large
which have remarkable co-occurrence of temporal frequency conkurtosis, and was reported to demonstrate high separation perfor-
ponents [11, 12]. On the other hand, since the spectra of speechance when used in IVA [18]. Therefore, the proposed ILRMA is
signals do not have low-rank properties, NMF modeling in IL- expected to further improve the separation performance. The exper-
RMA [11, 12, 13] is not necessarily appropriate for separatingmental results show that the proposed method is more effective than
speech mixtures. the Gaussian ILRMA and IVA when separating speech mixtures.
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2. PROPOSED GENERATIVE MODEL the source spectrum, or its counterp@tt,, .t } n, 7.+, is modeled by,
e.g., NMF, the model parameters cannot be optimized in a statistical
2.1. Formulation sense unlike the case in ILRMA.
On the other hand, the source model that we proposed in [24] is

Suppose thaly sources are observed bymicrophones. The source ssumed to satisfy the following (C3) instead of (C2) for the set of

signal and the microphone observation in each time-frequency sl

(f,t) € [NFr] x [Nr] are denoted as yperedges:
. N (C3) FiNF, = foreveryFy, Fy € F.
Spt=[s1,1,t:---,8n,0¢] €C (1) The set of hyperedges satisfying (C1) and (C3) is called triee-
Xy = T2t qINY“]T ech, ®) quency range divisiof24].

In this paper, by using the frequency range divisibnthe dis-
where[Np] := {1,...,Nr} and[Nr] := {1,..., Nr} denote the  tribution for {s,,r}n,r, is decomposed as follows:
set of frequency bins and time frames, respectively, dntheans

the matrix transpose. This paper deals with the linear mixing system pUsnridtnr) = ] TI T plsnro) )
given by ne[N] FEF te[Nyp]
@iy =Arspe, Spa= W;wa,h (3) Thanks to the decomposition (7) based on (C3), it is possible to an-

alytically obtain the normalization term in (7) at the same time as
where A; € CN*N andW; e CV*V denote the mixing and modeling higher-order correlations in each frequency rarge F.
demixing matrices for frequencﬁ c [NF]’ respective|y’ and® This in turn enables us to upgrade the scale parameters (SUCh as
means the matrix conjugate transpose. Note that the demixing mdcn, £, }n,r,¢ in (8) below which define the time-frequency structure
trix W for frequencyf € [Nr] is composed of the separation filters of source signals) from the time-invariant constants to time-varying

wy,, ; € CY for each source € [N] := {1,..., N} as follows: variables to be estimated and model them by NMF in the same way
as ILRMA (see Subsection 2.3 for details).
Wy = [wiy,...,wn ] € CVN, 4) By modeling source spectra with both the frequency range di-
vision and NMF, the proposed model can express the stronger de-
In the following, for the sake of simplicity, we define pendencies within neighboring frequency bins as well as the co-
- 7] occurrence relation of the frequency components between distant
Sn,pt 3= [Snfrit oo Snpe] €C (5)  frequency bins. We will call this approach ILRMA as well (for a

detailed comparison with the original ILRMA [12], see Section 4).
for the set of frequency bin8 = {f,..., fx} C [NF]. P g [12] )
2.3. ILRMA based on multivariate complex exponential power
distribution

Speech signals have a property in which the dependencies betwegn ynown that speech signals are better explained by distributions
neighboring frequency bins are stronger than those between distaih, greater kurtosis than Gaussian distribution. Therefore, follow-
bins. In the previous studies, by incorporating this property into thnq the studies for IVA [18, 24], as the distribution assumed in IL-
source models, efforts to improve the separation performance of IVAyva we use the multivariate complex exponential power (MEP)

have been made [21, 22,23, 24]. - distribution (see, e.g., [25] for real-valued MEP) defined as
The source distribution assumed in [21, 22, 23] is given by

smrall)? D(1+|F) - exp { - (Lzrel®)”
P({Sn,Fttn,F ) X H H exp{z (M) } (s = p{ < n,F, ) }7 ®

EINTtE[NT] Fer N Amb (matn,pe)!F1-T(1 + %)
6
©) whereI'(-) is the gamma function,F'| denotes the cardinality of
by using a hypergrapt{Nr], F)* satisfying the following two con-  S€tF” € F, andas,r: € R0 andf € R, are the scale and

2.2. Introduction of frequency range division into ILRMA

ditions (C1) and (C2): shape parameters in MEP, respectively. Note that MEP gith 1

is nothing but multivariate complex Gaussian distribution, and the
(€C1) Uper I = [NF; smaller the value of, the greater the kurtosis of the MEP.
(C2) There is a path betweerand; for arbitraryi, j € [Nr]. 2 As mentioned in Subsection 2.2, the scale parameters., } r,¢

Here, an.x: and3 are constants, anfi- || denotes the.2-norm for each source € [IN], which encodes the prior information of the

Owing to (C1) and (C2), each pair of frequency bins has the higher§Ource spectrum, are modeled by NMF as follows:

order correlation in (6), and hence the approaches in [21, 22, 23] Kn d

can also avoid the permutation problem in the same principle as the Qn Fp = (Z Un Fie - vn,k,t) :

original IVA [3, 4]. However, since the normalization term in (6) =1 '

cannot generally be obtained analytically because of (C2), even if

where K,,, {un,r,k}r, and{v, k. }+ denote the number of NMF
'A hypergraphis a pair(V, €) whereV/ is a finite set and’ is a set of  pases,k-th nonnegative base, aridth nonnegative activation in

non-empty subsets df, namely,& C 2 \ {0}. The elements of” are  \\E for sourcen € [IV], respectively. Alsod € R is the heuris-

CalEg‘ﬁg'ﬁii?gr?;m?)egemsegﬁg;ﬁf&ygﬁﬁi € Vis said to tic parameter that defines the domain subject to NMF as it was used

exist if the following condition holds: There exists a sequence of hyperedget [13]. If d =1 ord = 2, thgen the domain of NMF corresponds to
e1,...,en and a sequence of vertices (= 4),v1,...,vn (= j) suchthat  the power spectrunis, r.||* or the amplitude spectrumfis,, r,.|,
vgp_1,V € eg holdsfork =1,...,n. respectively.

©)
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In the generative model defined by (3), (7), (8), and (9), the seBy (15), (16), and (17), we have the following update rules:
of parameters for the demixing system is given by

© = {Wy, Un,F ks Un bt }ro, f,Ft ks (10)
and it will be optimized by the maximum likelihood criterion:

. 1
min J(©) = Ny Z log p(Sn,F,t) — QZlog|det Wrl.

n,F,t f

1
6Zt Tﬁ,F,t *Un,k,t * (un’p,t)*lfﬂd T+Bd

|F| : Et Un,k,t * (Hn,F,t)_l

Un,F,k — Un,F.k

1
By Tg,F.t “Un,Fk (ﬂ7z<,F,t)717ﬂd tHod
Un, k.t — Un, k.t ; ’

(11) EF ‘F| cUn,Fk * (Mn.Ftt)il
Substituting (8)—(9) into the cost functioi(©), we obtain (19)
h n n is defined by (13).
n,F,t k

5 3.2. Optimization of separation filters

7,*rL,F,t
(S, u o )ﬂd] - QZIOg |det Wy[+C, (12) e will derive the fast and stable update rules for the separation
ot B okt I filters {W} ; based on the MM algorithm in a similar mannerto [11,

whereC is independent of the parameté&sand we define 12, 13, 16, 17, 18]. When the shape paramgtén MEP satisfies
5 h 5 0 < B <1, the functionrgyF,t in (12) is concave with respect
SR LN J; [wn, s gl 13) r.r: € Rso. Therefore, by using the tangent line inequality,
(S

we can get the majorization functiofy|,, of J with respect to the
In the following, we call this approactiF, 3, d)-ILRMA since  separation filters as follows:
it is characterized by the frequency range divisibnthe scale pa-

rameters in MEP, and the NMF domain paramet&in (9). J(©) < I (0, {Wn,f}n.r)
= Zwﬁ,fRn,fwn,f -2 Zlog |det Wy| +C, (20)
3. OPTIMIZATION OF THE MODEL 't 7

In this se_zction_, an algorithm for solving the optimization prob- where{w,, (},,; are the auxiliary variables; is a constant inde-
lem (11) is derived. The update rules for the NMF parameters angendent of the separation filters, and we also define
the separation filters are derived in Subsections 3.1 and 3.2, respec-

tively. To obtain an efficient algorithm for the separation filters, the 1 h

shape parameter in MEP is considered only when 8 < 1. Fns = Nr Z [‘z’"*F'tmf’tmf’t] fekFer @1
After the convergence of the optimization, the separated signals ¢

are obtained by (3), and the amplitude ambiguities can be restored n,Fit = B el (22)

by applying the projection back technique [26, 27] as follows: (on.rt)? - (ZfeF |ﬂ’f§,f90f,t|2>

SnpiAsen = (wn x5 (W) e, € CY, (14) _ o . . .
. . ) Here,an, r,: In (22) is given by (9). In (20), the inequality holds with
wheree,, is a unit vector with the:-the element equal to one and the the equality whenw,, ; = 1w, s for all n € [N]andf € [Ng]

others equal to zero.

The minimization of (20) can iteratively be performed by a block

coordinate descent method for each separationfiligy as follows:
3.1. Optimization of NMF parameters

The update rules for the NMF parametéts,, 7k, Vn, k.t }n, F,k,t €N Wn,f (W}”Rn,f) en (23)
be derived by the majorization-minimization (MM) algorithm in the
same manner as the conventional NMF. For the majorization func- Wa,f 4= Wn,f /) Wh R pwn . (24)
tion J, Of the cost/ with respect to the NMF parameters,
J(©) < Jur(©, {An ot ks thn, Pt b, Fotke) 3.3. Summary of the proposed algorithm
1 Z 14+8d rff,FA,t The following is the overall procedure of the proposed algorithm:
Nr IR (U g - Uk, ) P 1. Set the frequency range divisioh, 3 € (0, 1], andd > 0.
d W Fk - Unk 2. Initialize the model parametees.
+7Z|F"M+C (15) elp i
Nt v L, Fot 3. lterate the following steps until convergence.

is obtained, wheré\,, r .k, in, F.t }n,r.t. @re auxiliary variables, (@) Calculate{rn,r,}n, .+ by (13).

and C is a constant independent of the NMF parameters. The in- (b) Update{un,r,k, Un,k,t }n,F i DY (16)—(19).
equality in (15) holds if and only if (c) Calculate{an, ¢ }n.r.¢ by (9).
L L (16) (d) Update{IW;}; by (21)—(24) withi,. ; = w,. 7 in (22).
Zk Un,F,k * Un,k,t £1f mf n.f
Hn,Ft = Z Un,Fk * Un,k,t- (17) 4. Calculate the separated signals by (3) and (14).
k 3f(rn.pe) < ' Frpt) - (rnpt — Frpe) + f (Fope)
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Table 1: Experimental conditions
Sampling rate 16 kHz
Frame length / Frame shift 4096 points (256 ms) / 1024 points (64 ms
Window function Hanning
Signal length 10s

~

SDR improvement [dB]

o N & o
SDR improvement [dB]

4. RELATION TO PRIOR WORK 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

beta beta

If the frequency range division is given Biva = {[Nr]}, then (a) (F1, 8, d)-ILRMA (AuxIVA) (b) (F2,B,d)-ILRMA
the proposed Fiva, 3, d)-ILRMA is only the auxiliary-function- 12 12
based IVA (AuxIVA [17, 18]) based on MEP with the time-varying sol LEHEHEHEH HEHEH 10 i
scale parameters,, (v, }n.t. Specifically,(Fiva, 1,1)-ILRMA

is nothing but the Gaussian AuxIVA [18]. In the same way, if
Fica = {{f}; f € [Nr|}, then(Fica, B, d)-ILRMA turns out

to be ILRMA based on a 1-dimensional exponential power distribu-
tion. In particular, the Original Gaussian ILRMA [11’ 12] is realized 0.10.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
by (Fica,1,1)-ILRMA. In this respect, the proposed method can beta beta

be regarded as a simultaneous extension of Gaussian ILRMA and (c) (Fs, B, d)-ILRMA (d) (Fs2, B, d)-ILRMA
AuxIVA based on MEP.

SDR improvement [dB]
SDR improvement [dB]

- d=1
md=2

. 1]

5. EXPERIMENT

\HHHHHH

5.1. Conditions

- d=1

To evaluate the performance of the proposed method, we carried out =
an experiment using the dataset provided by SiISEC2008 [28]. We 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 022 0.3 0.4 0.5 0.6 0.7 0.8 0
used the liverec speech data in the dev1 dataset, with a reverberation peta peta
time of 130 ms/250 ms and a microphone spacing of 5cm/1 m. Since (&) (Fi2s, 8, d)-ILRMA () (Fivp); 8, d)-ILRMA
the dev1 task of SISEC is an underdetermined BSS and the provided _:
data are stereo recordings, we used only the first and the second clean
spatial images to obtain the determined stereo mixture signals for
each sample, and 16 mixtures in total were obtained.

In the experiment we compared the propo&&d s, d)-ILRMA
with d € {1, 2} and 10 varieties o8 as shown in Figure 1. Also,
we investigated the 6 types of the frequency range divistpn=
{F; C[Nr]|i=1,...,k} (k€{1,2,8,32,128,[NFr]}), where

SDR improvement [dB]

SDR improvement [dB]
o N & o ®

o N & o «

~

‘ ‘ 12

1

SDR improvement [dB]

o N & o o
SDR improvement [dB]

o N & o o

e d=1 |
B d=2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
beta

Np Np (9) (Fizs, B, d)-ILRMA (") (Fiwvg), B, d)-ILRMA
F = {LT -1 +1,..., LT i)} (25) w/ initialization by 3 = 1 w/ initialization by 8 = 1

Fig. 1: Average SDR improvements and their standard deviation for
Note thatthe 73, 5, d)-ILRMA corresponds to the AUXIVA[17, 18] a0 (7, | 3. d)-ILRMA. The horizontal line denotes the shape pa-

based on the time-varying MEP, and €, 1, 1)-ILRMA cor- 5 eter5in MEP. In (g) and (h), the parametesare initialized b
responds to the conventional Gaussian ILRMA [11, 12]. The UM<, 6ing thi corresbonc(i?r)@fk 1( ()i’)-ILRpMA with 3 = 1 y
ber of NMF bases was set to 2 for each source, and the iteration 7 '

number of the optimization (step-3 in Subsection 3.3) was set to 20! . . . o .

for all methods. In each method, the separation filfét§ } ; were tqw validity of incorporating MEP distributions in ILRMA when

initialized by the identity matrix. As for the NMF parameters, we |7kl is small. While the highest score is attained %23, 1, 2)-

tested the two cases: random initializations from the uniform distri-ILRMA' it is not robust to the shape parameter The same trend

bution over(0, 1), whose results are shown in Figure 1 (a)—(f), and©an be seen in the7, 5, d)'.”‘.R_M_A with large & as well when t_he
initializations by the corresponding ILRMA ¢f — 1 shown in Fig- parameters are randomly initialized. On the other hand, with the

ure 1 (g)—(h), meaning thé#, 1, d)-ILRMA was performed for the |n'|t|aI|zat|0ns by the correspondin@; 1, d)'IL.RMA’ as sh_owp n
first 100 iterations followed byF, 3, d)-ILRMA for the second 100 Figure 1 (g) and (h), the prop_osed ILRMA with a MEP dl_strlbutlon
iterations. The evaluation criterion is SDR [29] improvements averlurns outto be robust t8, bl_‘t it does not show any SDR improve-
aged with 16 samples, which shows the overall separation qualitj"€nts from the correspondiricy., 1, d)-ILRMA.
The other experimental conditions are described in Table 1.

6. CONCLUSION
5.2. Results To stably improve the separation performance for speech mixtures,
Figure 1 shows the average SDR improvements and their devia generative model of ILRMA is extended by using the frequency
tions. The proposedF:, 8, d)-ILRMA outperforms the conven- range division to explicitly model the strong dependencies between
tional methods for all3 and d, showing the effectiveness of the neighboring frequency bins of speech signals. Also, MEP distribu-
proposed approach using the frequency range divistonAlso,  tions are introduced into ILRMA to model a source distribution with
(Fs, B,d)-ILRMA provides better results than the correspondinga large kurtosis. The proposed ILRMA based on MEP outperforms
(Fs, 1,d)-ILRMA for almost all shape parameters. This suggeststhe conventional Gaussian ILRMA and IVA based on MEP.
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