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ABSTRACT

Independent low-rank matrix analysis (ILRMA), a unified method of
independent vector analysis (IVA) and nonnegative matrix factoriza-
tion (NMF), is a state-of-the-art blind source separation method for
convolutive mixtures. Although ILRMA provides high separation
performance for music signals whose spectra can be well modeled
by NMF, speech spectra do not have low-rank properties, and mod-
eling them by NMF is not appropriate. In this paper, to stably im-
prove the separation performance of ILRMA for speech mixtures, a
source spectrum model in ILRMA is generalized to explicitly model
the strong higher-order correlations between neighboring frequency
bins of speech signals. In addition, multivariate complex exponential
power distributions, which are recognized to have high performance
with IVA, are introduced as source distributions assumed in ILRMA.
Experimental results show the effectiveness of the proposed method
over the original ILRMA when separating speech mixtures.

Index Terms— Blind source separation, independent compo-
nent analysis, independent vector analysis, nonnegative matrix fac-
torization, multivariate exponential power distribution

1. INTRODUCTION

Blind source separation (BSS) is a technique that estimates origi-
nal source signals from a given mixture without any knowledge of
mixing systems or microphone positions. The problem of BSS for
convolutive mixtures is generally addressed in the time-frequency
(TF) domain using the short-term Fourier transform [1]. For the
determined situation where the number of sources is less than or
equal to the number of microphones, frequency-domain independent
component analysis (FD-ICA [1]) and independent vector analysis
(IVA [2, 3, 4]) are common, and these methods have been applied to
preprocessing for speech recognition tasks for multiple speakers.

FD-ICA and IVA are the methods that perform BSS by re-
lying only on independence between source signals as a clue for
separation. In recent years, in addition to independence between
sources, efforts to exploit the time-frequency structure of source
signals, or source spectrum, have been made to improve the sep-
aration performance of FD-ICA and IVA. Among them, low-rank
approximation of source spectra by using nonnegative matrix fac-
torization (NMF [5, 6, 7, 8, 9, 10]) has received attention and has
been incorporated into the spectrum models assumed in FD-ICA
and IVA. This approach is called independent low-rank matrix anal-
ysis (ILRMA [11, 12, 13]), and it was reported to outperform the
performance of FD-ICA and IVA when separating music signals,
which have remarkable co-occurrence of temporal frequency com-
ponents [11, 12]. On the other hand, since the spectra of speech
signals do not have low-rank properties, NMF modeling in IL-
RMA [11, 12, 13] is not necessarily appropriate for separating
speech mixtures.

When ILRMA was first proposed by Kitamuraet al. [11, 12], a
(time-varying) complex Gaussian distribution was used as a source
distribution. This Gaussian ILRMA can be viewed as a Multichan-
nel NMF (MNMF [14, 15]), which is a multichannel extension of
Itakura-Saito NMF [6], rewritten as an optimization problem of the
demixing system. Since the degree of freedom of the model is large
in MNMF, the sensitivity of the optimization of MNMF to the initial
model parameters and the rather large processing time required for
optimization were reported as cumbersome problems [12, 14, 15]．
On the other hand, since ILRMA has fewer parameters than MNMF
and can utilize the fast and stable optimization algorithm based on
the auxiliary-function-based IVA (AuxIVA [16, 17, 18]), ILRMA
can achieve a more efficient and robust separation compared with
MNMF.

Recently, in order to improve the stability and the separation per-
formance of NMF and MNMF, distributions with heavier tails than
the complex Gaussian distribution have been introduced as source
distributions [7, 8, 9, 10, 19, 20]. As for ILRMA, inspired by the
studies to extend the source distribution to the complex Student’st-
distribution in NMF [8] and MNMF [19], ILRMA based on the com-
plex Student’st-distribution, calledt-ILRMA, was proposed [13].
t-ILRMA can realize the Gaussian ILRMA [11, 12] and ILRMA
based on the complex Cauchy distribution, which has a heavy tail
as a result of adjusting the degree of freedom parameter in Stu-
dent’st-distribution. However, since the separation performance of
t-ILRMA with heavy tails depends on the initial model parameters
and the degree of freedom parameter, it is difficult to stably improve
the separation performance of Gaussian ILRMA [13]. Furthermore,
t-ILRMA still uses a low-rank approximation of source spectra by
using NMF, and so the model int-ILRMA is not appropriate for
speech signals.

In this paper, to stably improve the separation performance of
ILRMA, we explicitly model in ILRMA the property of speech spec-
tra in which the statistical dependencies between neighboring fre-
quency bins are stronger than the dependencies between distant bins.
The attempts to model the above speech property were successful in
improving the performance of IVA [21, 22, 23, 24], and we will gen-
eralize this approach for ILRMA (see Subsection 2.2). With this
modeling, the proposed ILRMA is expected to alleviate the adverse
effect of low-rank modeling of speech spectra in the original IL-
RMA, and to stably improve the separation performance. Further-
more, we generalize the source distribution assumed in Gaussian IL-
RMA to multivariate complex exponential power (MEP) distribution
(see Subsection 2.3), which is a different extension fromt-ILRMA.
The MEP can represent a distribution with a heavy tail and a large
kurtosis, and was reported to demonstrate high separation perfor-
mance when used in IVA [18]. Therefore, the proposed ILRMA is
expected to further improve the separation performance. The exper-
imental results show that the proposed method is more effective than
the Gaussian ILRMA and IVA when separating speech mixtures.
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2. PROPOSED GENERATIVE MODEL

2.1. Formulation

Suppose thatN sources are observed byN microphones. The source
signal and the microphone observation in each time-frequency slot
(f, t) ∈ [NF ]× [NT ] are denoted as

sf,t = [s1,f,t, . . . , sN,f,t]
⊤ ∈ CN (1)

xf,t = [x1,f,t, . . . , xN,f,t]
⊤ ∈ CN , (2)

where[NF ] := {1, . . . , NF } and[NT ] := {1, . . . , NT } denote the
set of frequency bins and time frames, respectively, and·⊤ means
the matrix transpose. This paper deals with the linear mixing system
given by

xf,t = Afsf,t, sf,t = Wh
f xf,t, (3)

whereAf ∈ CN×N andWf ∈ CN×N denote the mixing and
demixing matrices for frequencyf ∈ [NF ], respectively, and·h
means the matrix conjugate transpose. Note that the demixing ma-
trix Wf for frequencyf ∈ [NF ] is composed of the separation filters
wn,f ∈ CN for each sourcen ∈ [N ] := {1, . . . , N} as follows:

Wf = [w1,f , . . . ,wN,f ] ∈ CN×N . (4)

In the following, for the sake of simplicity, we define

sn,F,t := [sn,f1,t, . . . , sn,fk,t]
⊤ ∈ C|F | (5)

for the set of frequency binsF = {f1, . . . , fk} ⊆ [NF ].

2.2. Introduction of frequency range division into ILRMA

Speech signals have a property in which the dependencies between
neighboring frequency bins are stronger than those between distant
bins. In the previous studies, by incorporating this property into the
source models, efforts to improve the separation performance of IVA
have been made [21, 22, 23, 24].

The source distribution assumed in [21, 22, 23] is given by

p({sn,F,t}n,F,t) ∝
∏

n∈[N ]

∏
t∈[NT ]

exp

{
−
∑
F∈F

(
∥sn,F,t∥2

αn,F,t

)β
}
(6)

by using a hypergraph([NF ],F)1 satisfying the following two con-
ditions (C1) and (C2):

(C1)
∪

F∈F F = [NF ];

(C2) There is a path betweeni andj for arbitraryi, j ∈ [NF ]. 2

Here,αn,F,t andβ are constants, and∥ · ∥ denotes theL2-norm.
Owing to (C1) and (C2), each pair of frequency bins has the higher-
order correlation in (6), and hence the approaches in [21, 22, 23]
can also avoid the permutation problem in the same principle as the
original IVA [3, 4]. However, since the normalization term in (6)
cannot generally be obtained analytically because of (C2), even if

1A hypergraphis a pair(V, E) whereV is a finite set andE is a set of
non-empty subsets ofV , namely,E ⊆ 2V \ {∅}. The elements ofV are
calledverticesand the elements ofE are calledhyperedges.

2In the hypergraph(V, E), thepathbetweeni ∈ V andj ∈ V is said to
exist if the following condition holds: There exists a sequence of hyperedges
e1, . . . , en and a sequence of verticesv0 (= i), v1, . . . , vn (= j) such that
vk−1, vk ∈ ek holds fork = 1, . . . , n.

the source spectrum, or its counterpart{αn,F,t}n,F,t, is modeled by,
e.g., NMF, the model parameters cannot be optimized in a statistical
sense unlike the case in ILRMA.

On the other hand, the source model that we proposed in [24] is
assumed to satisfy the following (C3) instead of (C2) for the set of
hyperedgesF :

(C3) F1 ∩ F2 = ∅ for everyF1, F2 ∈ F .

The set of hyperedgesF satisfying (C1) and (C3) is called thefre-
quency range division[24].

In this paper, by using the frequency range divisionF , the dis-
tribution for{sn,F,t}n,F,t is decomposed as follows:

p({sn,F,t}n,F,t) =
∏

n∈[N ]

∏
F∈F

∏
t∈[NT ]

p(sn,F,t). (7)

Thanks to the decomposition (7) based on (C3), it is possible to an-
alytically obtain the normalization term in (7) at the same time as
modeling higher-order correlations in each frequency rangeF ∈ F .
This in turn enables us to upgrade the scale parameters (such as
{αn,F,t}n,F,t in (8) below which define the time-frequency structure
of source signals) from the time-invariant constants to time-varying
variables to be estimated and model them by NMF in the same way
as ILRMA (see Subsection 2.3 for details).

By modeling source spectra with both the frequency range di-
vision and NMF, the proposed model can express the stronger de-
pendencies within neighboring frequency bins as well as the co-
occurrence relation of the frequency components between distant
frequency bins. We will call this approach ILRMA as well (for a
detailed comparison with the original ILRMA [12], see Section 4).

2.3. ILRMA based on multivariate complex exponential power
distribution

It is known that speech signals are better explained by distributions
with greater kurtosis than Gaussian distribution. Therefore, follow-
ing the studies for IVA [18, 24], as the distribution assumed in IL-
RMA, we use the multivariate complex exponential power (MEP)
distribution (see, e.g., [25] for real-valued MEP) defined as

p(sn,F,t) =

Γ(1 + |F |) · exp
{
−
(

∥sn,F,t∥2

αn,F,t

)β}
(παn,F,t)|F | · Γ(1 + |F |

β
)

, (8)

whereΓ(·) is the gamma function,|F | denotes the cardinality of
setF ∈ F , andαn,F,t ∈ R>0 andβ ∈ R>0 are the scale and
shape parameters in MEP, respectively. Note that MEP withβ = 1
is nothing but multivariate complex Gaussian distribution, and the
smaller the value ofβ, the greater the kurtosis of the MEP.

As mentioned in Subsection 2.2, the scale parameters{αn,F,t}F,t

for each sourcen ∈ [N ], which encodes the prior information of the
source spectrum, are modeled by NMF as follows:

αn,F,t =

(
Kn∑
k=1

un,F,k · vn,k,t

)d

, (9)

whereKn, {un,F,k}F , and{vn,k,t}t denote the number of NMF
bases,k-th nonnegative base, andk-th nonnegative activation in
NMF for sourcen ∈ [N ], respectively. Also,d ∈ R>0 is the heuris-
tic parameter that defines the domain subject to NMF as it was used
in [13]. If d = 1 or d = 2, then the domain of NMF corresponds to
the power spectrum∥sn,F,t∥2 or the amplitude spectrum∥sn,F,t∥,
respectively.
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In the generative model defined by (3), (7), (8), and (9), the set
of parameters for the demixing system is given by

Θ = {Wf , un,F,k, vn,k,t}n,f,F,t,k, (10)

and it will be optimized by the maximum likelihood criterion:

min
Θ

J(Θ) := − 1

NT

∑
n,F,t

log p(sn,F,t)− 2
∑
f

log | detWf |.

(11)

Substituting (8)–(9) into the cost functionJ(Θ), we obtain

J(Θ) =
1

NT

∑
n,F,t

[
|F | · d · log

∑
k

un,F,k · vn,k,t

+
rβn,F,t(∑

k un,F,k · vn,k,t

)βd
]
− 2

∑
f

log |detWf |+ C, (12)

whereC is independent of the parametersΘ, and we define

rn,F,t := ∥sn,F,t∥2 =
∑
f∈F

|wh
n,fxf,t|2. (13)

In the following, we call this approach(F , β, d)-ILRMA since
it is characterized by the frequency range divisionF , the scale pa-
rameterβ in MEP, and the NMF domain parameterd in (9).

3. OPTIMIZATION OF THE MODEL

In this section, an algorithm for solving the optimization prob-
lem (11) is derived. The update rules for the NMF parameters and
the separation filters are derived in Subsections 3.1 and 3.2, respec-
tively. To obtain an efficient algorithm for the separation filters, the
shape parameter in MEP is considered only when0 < β ≤ 1.

After the convergence of the optimization, the separated signals
are obtained by (3), and the amplitude ambiguities can be restored
by applying the projection back technique [26, 27] as follows:

sn,f,tAfen = (wh
n,fxf,t)(W

h
f )

−1en ∈ CN , (14)

whereen is a unit vector with then-the element equal to one and the
others equal to zero.

3.1. Optimization of NMF parameters

The update rules for the NMF parameters{un,F,k, vn,k,t}n,F,k,t can
be derived by the majorization-minimization (MM) algorithm in the
same manner as the conventional NMF. For the majorization func-
tion J+

NMF of the costJ with respect to the NMF parameters,

J(Θ) ≤ J+
NMF(Θ, {λn,F,t,k, µn,F,t}n,F,t,k)

:=
1

NT

∑
n,F,t,k

λ1+βd
n,F,t,k

rβn,F,t

(un,F,k · vn,k,t)βd

+
d

NT

∑
n,F,t,k

|F | · un,F,k · vn,k,t

µn,F,t
+ C (15)

is obtained, where{λn,F,t,k, µn,F,t}n,F,t,k are auxiliary variables,
andC is a constant independent of the NMF parameters. The in-
equality in (15) holds if and only if

λn,F,t,k =
un,F,k · vn,k,t∑
k un,F,k · vn,k,t

(16)

µn,F,t =
∑
k

un,F,k · vn,k,t. (17)

By (15), (16), and (17), we have the following update rules:

un,F,k ← un,F,k

[
β
∑

t r
β
n,F,t · vn,k,t · (µn,F,t)

−1−βd

|F | ·
∑

t vn,k,t · (µn,F,t)−1

] 1
1+βd

(18)

vn,k,t ← vn,k,t

[
β
∑

F rβn,F,t · un,F,k · (µn,F,t)
−1−βd∑

F |F | · un,F,k · (µn,F,t)−1

] 1
1+βd

,

(19)

where{rn,F,t}n,F,t is defined by (13).

3.2. Optimization of separation filters

We will derive the fast and stable update rules for the separation
filters{Wf}f based on the MM algorithm in a similar manner to [11,
12, 13, 16, 17, 18]. When the shape parameterβ in MEP satisfies
0 < β ≤ 1, the functionrβn,F,t in (12) is concave with respect

to rn,F,t ∈ R>0. Therefore, by using the tangent line inequality,3

we can get the majorization functionJ+
IVA of J with respect to the

separation filters as follows:

J(Θ) ≤ J+
IVA(Θ, {w̃n,f}n,f )

:=
∑
n,f

wh
n,fRn,fwn,f − 2

∑
f

log | detWf |+ C, (20)

where{w̃n,f}n,f are the auxiliary variables,C is a constant inde-
pendent of the separation filters, and we also define

Rn,f =
1

NT

∑
t

[
ϕn,F,txf,tx

h
f,t

]
, f ∈ F ∈ F (21)

ϕn,F,t =
β

(αn,F,t)
β ·
(∑

f∈F |w̃h
n,fxf,t|2

)1−β
. (22)

Here,αn,F,t in (22) is given by (9). In (20), the inequality holds with
the equality whenwn,f = w̃n,f for all n ∈ [N ] andf ∈ [NF ].
The minimization of (20) can iteratively be performed by a block
coordinate descent method for each separation filterwn,f as follows:

wn,f ←
(
Wh

f Rn,f

)−1

en (23)

wn,f ← wn,f/
√

wh
n,fRn,fwn,f . (24)

3.3. Summary of the proposed algorithm

The following is the overall procedure of the proposed algorithm:

1. Set the frequency range divisionF , β ∈ (0, 1], andd > 0.

2. Initialize the model parametersΘ.

3. Iterate the following steps until convergence.

(a) Calculate{rn,F,t}n,F,t by (13).

(b) Update{un,F,k, vn,k,t}n,F,k,t by (16)–(19).

(c) Calculate{αn,F,t}n,F,t by (9).

(d) Update{Wf}f by (21)–(24) withw̃n,f = wn,f in (22).

4. Calculate the separated signals by (3) and (14).

3f(rn,F,t) ≤ f ′(r̃n,F,t) · (rn,F,t − r̃n,F,t) + f(r̃n,F,t)
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Table 1: Experimental conditions
Sampling rate 16 kHz

Frame length / Frame shift 4096 points (256 ms) / 1024 points (64 ms)
Window function Hanning

Signal length 10 s

4. RELATION TO PRIOR WORK

If the frequency range division is given byFIVA = {[NF ]}, then
the proposed(FIVA, β, d)-ILRMA is only the auxiliary-function-
based IVA (AuxIVA [17, 18]) based on MEP with the time-varying
scale parameters{αn,[NF ],t}n,t. Specifically,(FIVA, 1, 1)-ILRMA
is nothing but the Gaussian AuxIVA [18]. In the same way, if
FICA = {{f} ; f ∈ [NF ]}, then(FICA, β, d)-ILRMA turns out
to be ILRMA based on a 1-dimensional exponential power distribu-
tion. In particular, the original Gaussian ILRMA [11, 12] is realized
by (FICA, 1, 1)-ILRMA. In this respect, the proposed method can
be regarded as a simultaneous extension of Gaussian ILRMA and
AuxIVA based on MEP.

5. EXPERIMENT

5.1. Conditions

To evaluate the performance of the proposed method, we carried out
an experiment using the dataset provided by SiSEC2008 [28]. We
used the liverec speech data in the dev1 dataset, with a reverberation
time of 130 ms/250 ms and a microphone spacing of 5 cm/1 m. Since
the dev1 task of SiSEC is an underdetermined BSS and the provided
data are stereo recordings, we used only the first and the second clean
spatial images to obtain the determined stereo mixture signals for
each sample, and 16 mixtures in total were obtained.

In the experiment we compared the proposed(F , β, d)-ILRMA
with d ∈ {1, 2} and 10 varieties ofβ as shown in Figure 1. Also,
we investigated the 6 types of the frequency range divisionFk =
{Fi ⊆ [NF ] | i = 1, . . . , k} (k ∈ {1, 2, 8, 32, 128, [NF ]}), where

Fi = {⌊
NF

k
· (i− 1)⌋+ 1, . . . , ⌊NF

k
· i⌋}. (25)

Note that the(F1, β, d)-ILRMA corresponds to the AuxIVA [17, 18]
based on the time-varying MEP, and the(F[NF ], 1, 1)-ILRMA cor-
responds to the conventional Gaussian ILRMA [11, 12]. The num-
ber of NMF bases was set to 2 for each source, and the iteration
number of the optimization (step-3 in Subsection 3.3) was set to 200
for all methods. In each method, the separation filters{Wf}f were
initialized by the identity matrix. As for the NMF parameters, we
tested the two cases: random initializations from the uniform distri-
bution over(0, 1), whose results are shown in Figure 1 (a)–(f), and
initializations by the corresponding ILRMA ofβ = 1 shown in Fig-
ure 1 (g)–(h), meaning that(F , 1, d)-ILRMA was performed for the
first 100 iterations followed by(F , β, d)-ILRMA for the second 100
iterations. The evaluation criterion is SDR [29] improvements aver-
aged with 16 samples, which shows the overall separation quality.
The other experimental conditions are described in Table 1.

5.2. Results

Figure 1 shows the average SDR improvements and their devia-
tions. The proposed(F2, β, d)-ILRMA outperforms the conven-
tional methods for allβ and d, showing the effectiveness of the
proposed approach using the frequency range divisionF . Also,
(F8, β, d)-ILRMA provides better results than the corresponding
(F8, 1, d)-ILRMA for almost all shape parameters. This suggests
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Fig. 1: Average SDR improvements and their standard deviation for
each(Fk, β, d)-ILRMA. The horizontal line denotes the shape pa-
rameterβ in MEP. In (g) and (h), the parametersΘ are initialized by
using the corresponding(Fk, 1, d)-ILRMA with β = 1.

the validity of incorporating MEP distributions in ILRMA when
|Fk| is small. While the highest score is attained by(F128, 1, 2)-
ILRMA, it is not robust to the shape parameterβ. The same trend
can be seen in the(Fk, β, d)-ILRMA with large k as well when the
parameters are randomly initialized. On the other hand, with the
initializations by the corresponding(Fk, 1, d)-ILRMA, as shown in
Figure 1 (g) and (h), the proposed ILRMA with a MEP distribution
turns out to be robust toβ, but it does not show any SDR improve-
ments from the corresponding(Fk, 1, d)-ILRMA.

6. CONCLUSION

To stably improve the separation performance for speech mixtures,
a generative model of ILRMA is extended by using the frequency
range division to explicitly model the strong dependencies between
neighboring frequency bins of speech signals. Also, MEP distribu-
tions are introduced into ILRMA to model a source distribution with
a large kurtosis. The proposed ILRMA based on MEP outperforms
the conventional Gaussian ILRMA and IVA based on MEP.
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