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ABSTRACT

Live concert recordings consist in long multitrack audio sam-
ples with significant interferences between channels. For au-
dio engineering purposes, it is desirable to attenuate those in-
terferences. Recently, we proposed an algorithm to this end
based on Non-negative Matrix Factorization, that iteratively
estimate the clean power spectral densities of the sources and
the strength of each in each microphone signal, encoded in an
interference matrix. Although it behaves well, this method is
too demanding computationally for full-length concerts last-
ing more than one hour. In this paper, we show how random
projections of the data can be leveraged for effective estima-
tion of the parameters. Interference reduction with these ideas
can be achieved on full-length live multi-track recordings in
an acceptable time and could be used by sound engineers. We
demonstrate the efficiency of this approach on real full-length
live recordings from the Montreux Jazz Festival and also pro-
vide an implementation of the method.

Index Terms— interference reduction, microphone leak-
age, source separation, random projection, compressive sens-
ing

1. INTRODUCTION

It is common for musicians and sound engineers to record
different instruments at different times. The major benefit of
this practice is to obtain clean and isolated tracks that can
easily be processed individually in a second stage. However,
this practice hinders musical spontaneity and interaction. In
some scenarios, such as live performances, orchestral record-
ings and so on, all the musicians play together. Even if each
one is recorded by its own dedicated microphone, spurious
sounds are captured as well, such as the sound of other instru-
ments. These are called interferences, or microphone leakage
in the sound engineering parlance. As long as the musicians
do play in the same room, they cannot be avoided, but only
reduced to some extent through sophisticated microphoning
practices [1].

In the last 10 years, many studies have been conducted on
the topic of interference reduction both in time domain [3, 4]
and in time-frequency domain [5, 6, 2]. Notably, the method

Fig. 1: Illustration of typical interferences found in multi-
track live recordings. Even if each voice gets its own ded-
icated microphones, the resulting signals capture all voices.
The amount of interference is quantified by the interference
matrix, as proposed in [2] (courtesy of R. Bittner).

described in [2] totally neglects phase dependencies to adopt
an energy-based model. More specifically, inspired by the
Non-negative Matrix Factorization (NMF [7]), its parameters
are twofold. First, the Power Spectral Densities (PSDs) of
the sources encode the power spectrum of each source variy-
ing along time. Second, the interference matrix specify how
much of each source does get into each microphone signal
(see Figure 1). After estimation of all parameters, the desired
signals are recovered through generalized Wiener filter [8, 9].
As such, that approach generalizes [5, 6] with the adjunction
of the interference matrix and achieves good interference re-
duction in practice despite its simplifying assumptions.

While being very effective in practice, the method in [2,
10] does suffer from two main weaknesses. First, estimation
of the sources PSDs relies on ad-hoc heuristics. Second, it
cannot scale to full-length recordings due to computational
burden. In our previous work [11], we addressed this first
issue, showing how a rigorous probabilistic Gaussian frame-
work [8, 9, 12] may be used to yield provably optimal al-
gorithms. However, the computational problem remains an
issue for the actual embedding of such methods in sound en-
gineering devices today. More specifically, the computational
bottleneck lies in the estimation of the interference matrix.
If it was available, processing could indeed be achieved on a
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frame-by-frame basis, strongly reducing computational bur-
den and even allow for real-time processing.

In this work, we show how state-of-the-art performances
in interference reduction can be obtained by estimating the
interference matrix after application of a dimension reduction
method. Such a method should capture as much of the vari-
ation of the data as possible [13]. While a sensible way to
do it would be to use Principal Components Analysis (PCA),
random projections were found to be just as effective, as al-
ready noticed in [14]. The core contribution is to show that
the Gaussian framework underlying estimation of the interfer-
ence matrix still holds in the compressed domain, leading to
a drastic decrease of the computational cost of the estimation
for similar performance, creating therefore, to our knowledge,
the first interference reduction method applicable to the scale
of full-length recordings.

2. MODEL AND STATE OF THE ART

2.1. Notation and probabilistic model

We consider J voices captured by I microphones, yielding
mixtures xi, with i = 1, . . . , I . Without loss of generality,
every voice j = 1, . . . , J is present in all mixtures xi and we
define the image yij as the contribution of voice j in mixture
i. Moving to a Time-Frequency (TF) representation such as
the Short Term Fourier Transform (STFT), this translates as:

Xi (f, t) =

J∑
j=1

Yij (f, t) , (1)

whereXi and Yij are the STFT of xi and yij and are complex
matrices of dimension F×T , with F the number of frequency
bands and T the number of time frames. The interference
reduction problem consists in computing estimates Ŷij for the
images Yij .

We now briefly summarize the assumptions of the Gaus-
sian Framework [11, 9]. First, all {Yij (f, t)}ijft are assumed
independent. Then, we choose the Local Gaussian Model
(LGM, [15, 9]), adequate for locally stationary signals:

Yij (f, t) ∼ Nc (0, Pij (f, t)) , (2)

where Nc is the isotropic complex Gaussian distribution [16]
and Pij (f, t) ≥ 0 is the Power Spectral Density (PSD) of
voice image yij .

At this point, we model those Pij by assuming the amount
of interference of each voice j into microphone i is controlled
by a channel-dependent scalar factors λij (f) ≥ 0 [2]:

Pij (f, t) = λij (f)Pj (f, t) , (3)

where Pj(f, t) ≥ 0 is the latent PSD of voice j and is inde-
pendent of the channel i and the I × J interference matrix is
defined as [Λ(f)]ij = λij(f) [2, 11].

As a sum of independent Gaussian variables, Xi (f, t) is
distributed as:

Xi (f, t) ∼ Nc

0,

J∑
j=1

λij(f)Pj (f, t)

 , (4)

and the parameters for the model to be estimated are:

Θ =
{

Λ(f), {Pj (f, t)}j
}
. (5)

If these are given, we can estimate any desired Yij through
generalized Wiener filtering:

Ŷij(f, t) =
Pij(f, t)∑J

j′=1 Pij(f, t)
Xi(f, t) ,Wi,j(f, t)Xi(f, t),

(6)
where Wi,j(f, t) is called the Wiener gain. Time-domain sig-
nals are finally recovered through inverse STFT.

2.2. State of the art

We now briefly review the Music Interference Removal Al-
gorithm (MIRA) for parameter estimation [11]. In short,
it maximizes the parameters likelihood given the observa-
tions Xi (f, t). This can be shown to be equivalent to:

Θ̂← arg min
Θ

∑
f,t,i

d0

Vi(f, t)‖∑
j

λij (f)Pj(f, t)

 , (7)

where d0 is the Itakura-Saito divergence [17]. In this setting,
Λ (f) and Pj are alternatively updated following the classic
Non-negative Matrix Factorization (NMF) methodology:

Pj (f, t)← Pj (f, t) ·
∑I

i=1 Pi (f, t)
−2
Vi (f, t)λij (f)∑I

i=1 Pi (f, t)
−1
λij (f)

(8)

λij(f)← λij(f) ·
∑T

t=1 Pi(f, t)
−2Vi(f, t)Pj(f, t)∑T

t=1 Pi(f, t)−1Pj(f, t)
, (9)

where Vi(f, t) , |Xi(f, t)|2 andPi(f, t) ,
∑

j λij(f)Pj(f, t).
A good initialization to MIRA is to take each Pj as the spec-
trogram of the signal captured by the close-microphone for
voice j.

3. RANDOM PROJECTION

The MIRA approach presented above is only able to process
small-scale data because of its computational load. More pre-
cisely, it can be seen that its time and space complexity, using
(8) and (9) is O(FTIJ). Typical values for a 3 minute long
song are F = 4096, T = 10000, I = 30, J = 25 and compu-
tations take about one hour on a typical powerful workstation
with 64 Gb of RAM. Processing of a full-length recording is
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♫ MIRA

♫ MIRARandom
Projection

MIRA

Fig. 2: Block diagram of the proposed approach: instead of
estimating both Λ(f) and {Pj(f, t)}j , Λ(f) is estimated in
a projected smaller subspace and kept fixed for estimating
{Pj(f, t)}j from the original mix.

not tractable in that case and a speed up is required for MIRA
to be used by actual sound engineers.

After investigation, the bottleneck of MIRA appears as the
updating rule (9) for the interference matrix Λ. That update
requires a summation over all the T frames of the recording,
forcing the algorithm to access the whole data at each iter-
ation, which cannot be achieved easily in practice. If Λ(f)
was known, the algorithm would be significantly faster and
may run online. The core idea of the current study is thus
to develop a two-stage procedure, where we first estimate the
interference matrix Λ in a computationally effective manner
and then use it in a second stage to estimate the voices PSD
in an online fashion to proceed to separation. The strategy is
illustrated in Figure 2.

The main contribution here then becomes estimation of Λ
from a compressed representation of the data, in a very sim-
ple instance of compressed learning [13, 18]. The proposed
method is to construct a random projection Mi (f, r) of each
recording Xi of dimension F ×R, with R� T . This is done
as:

Mi(f, r) ,
T∑

t=1

Xi(f, t) Qi(r, t), (10)

where the R × T projection matrix Qi is composed of inde-
pendent and identically distributed entries taken asQi(r, t) ∼
N (0, 1). Since it is not used in the sequel, this matrix does not
need to be stored anywhere in memory but is drawn on-the-go
while parsing the data only once to compute Mi.

Thanks to our Gaussian model (4) on the mixtures, we can
compute the distribution of Mj (f, r) as:

Mi (f, r) ∼ N

0,
∑
j

λij (f)Sj (f, r)

 , (11)

with
Sj (f, r) ,

∑
t

Pj (f, t)Qi (r, t)
2
. (12)

As can be seen, we obtain the same model for Mi that we
had for Xi in (4), simply replacing T for R and Pj for Sj .
The important point there is that Λ is the same in both cases.
Hence, we may learn it along S from the projections only
using MIRA on the projections. This requires summations
over r instead of t in (9), leading to huge computational sav-
ings. Once it is learned, we can discard S and keep Λ fixed
to learn Pj through (8) on the original data, yielding our pro-
posed fastMIRA.

4. EXPERIMENTAL EVALUATION

In this section, we compare performance and computing time
of the proposed fastMIRA method with respect to its origi-
nal version, MIRA. The two algorithms were run on a whole
pop rock multitrack live recording session of Huey Lewis and
the News’ song Power of Love at the Montreux Jazz Festival
2000 (length: 5m 10s). This recording features 40 micro-
phones, recording 30 voices. It has a sample-rate of 48 kHZ
and a depth of 16 bits/sample. The overall size of this mul-
titrack recording is almost 1.2 Gb and was provided by the
Montreux Jazz Digital Project and EPFL. To promote repro-
ducibility of the results presented here, we provide an open-
source implementation of both MIRA and fastMIRA in the
webpage dedicated to this paper1.

Since we already performed a thorough perceptual eval-
uation of MIRA in [11], we decided here to compare the
model parameters estimated by both algorithms as a function
of the projection dimension R = 2k, with k = 0, 1, . . . , 13.
For each R, all the parameters are computed anew. Figure 3a
shows the (logarithm of the) reconstruction error (7), which is
the cost function minimized by the original MIRA as function
of the number of iterations for learning Pj . Thus, that plot
quantifies the overall modeling capabilities of fastMIRA
as compared to MIRA. In this figure, it is clearly seen that
fastMIRA provides similar results than MIRA in terms of
reconstruction error after only a few iterations.

However, a similar reconstruction error is not sufficient
to conclude about the two algorithms yielding similar model
estimates. In fact, it does not take into account Pj nor Λ(f)
separately, but only their product as in (7). To investigate
whether fastMIRA does yield the same estimate for Λ
than MIRA, we compute the normalized mean square error
(nMSE) in logarithm scale between those estimates as a func-
tion of R and the recording length, i.e. the number of frames
T . Figure 3b shows the results for this experiment, and we see
a clear phase transition between systematic error and a good
estimation (nMSE = −1.25 dB), once some threshold value
is crossed, say R = 64. Interestingly, this kind of behaviour

1See github.com/Chutlhu/mirapie
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Fig. 3: Evaluation of the proposed fastMIRA method for various criteria.

is typical for compressed sensing applications. Whatever the
number of frames T found in the original recording, we can
see that pickingR = 256 is sufficient to get the same estimate
for Λ through fastMIRA as the one obtained through MIRA.

Once granted that both approaches lead to similar esti-
mates for the model parameters, we informally checked per-
ceptually that they lead to similar separation quality. Do-
ing so, we noticed that fastMIRA seems to provide slightly
more isolation in general than MIRA and a bit more distortion.
However, this appears to be a very slight effect and we should
use a thorough evaluation to really tell whether the two sys-
tems can be discriminated perceptually, which is not obvious.

Now, the greatest point of interest in using fastMIRA
over MIRA is obviously its reduced computational complex-
ity. Figure 3c shows the time taken for computations on a
8-core computer with 16 Gb of RAM, which is a common
setup for a professional sound engineer. We can see that the
proposed approach can yield a good approximation in only
few minutes, while MIRA takes more than 30 minutes.

Finally, we investigate if the performance of fast-
MIRA depends on the length of the recordings. To this end,
we run the proposed algorithm on two full-length live perfor-
mances recorded at Montreux Jazz Festival: Huey Lewis and
the News (length: 50min; 25 voices) and Sigur Rós (length:
120min, 30 voices). As metrics, we consider the nMSE
(log10 scale) between an excerpt (first 5 minutes) from the
whole processed concert and the same excerpt processed indi-
vidually through MIRA. Results are reported in Table 1. From
this table, we can notice that the method is not particularly
affected by the length of the input recordings. A closer inves-
tigation reveals that the provided small amount of distortion
depends on the some variability in the stage setup, such as
position and usage of the microphones, which happens more
often in Sigur Rós performance. Moreover even if the pro-
cessing time is quite high (17 hours for a 2 hour concert), we
want here to highlight that previous method could not even
run on recording-studio-like workstation.

Recordings Size Duration Time elapsed nMSE
[GB] [min] [h] [dB]

Huey Lewis... 10 55 6 h 58 min 0.767
Sigur Rós 39.2 123 16 h 41 min 0.909

Table 1: Difference in dB between 5-minute of estimated
voice images using fastMIRA on the full-length recordings
and the same portion processed individually through MIRA.
R = 512 was used.

5. CONCLUSION

In this paper, we have proposed a simple, yet effective way to
reduce the computational load of an algorithm for interference
reduction in live multitrack recordings. It is based on exploit-
ing random projections of the input data to estimate model
parameters. As we demonstrated, the proposed algorithm is
able to achieve estimation and interference reduction just as
well as the original method, while going through the data only
twice, which is desirable in such massive recordings. Dur-
ing our evaluation, we applied interference reduction on real
and challenging multitrack live data from the Montreux Jazz
Festival, leading to the first method we are aware of that can
reduce voice leakage at this scale. Future work consists in de-
veloping a user-friendly interface which can be used by sound
engineers to process full-length live recordings. Moreover the
impact of having long interference-reduced tracks for Music
Information Retrieval tasks will be also studied.
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