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ABSTRACT

We present Bitwise Neural Networks (BNN) as an efficient hardware-
friendly solution to single-channel source separation tasks in resource-
constrained environments. In the proposed BNN system, we replace
all the real-valued operations during the feedforward process of
a Deep Neural Network (DNN) with bitwise arithmetic (e.g. the
XNOR operation between bipolar binaries in place of multiplica-
tions). Thanks to the fully bitwise run-time operations, the BNN
system can serve as an alternative solution where efficient real-time
processing is critical, for example real-time speech enhancement in
embedded systems. Furthermore, we also propose a binarization
scheme to convert the input signals into bit strings so that the BNN
parameters learn the Boolean mapping between input binarized mix-
ture signals and their target Ideal Binary Masks (IBM). Experiments
on the single-channel speech denoising tasks show that the efficient
BNN-based source separation system works well with an acceptable
performance loss compared to a comprehensive real-valued network,
while consuming a minimal amount of resources.

Index Terms— Bitwise neural networks, deep learning, speech
enhancement, source separation, low-power computing

1. INTRODUCTION

Recently deep learning has become one of the major forces in im-
proving the performance of machine learning-based source separa-
tion tasks, thanks to its powerful multi-layered structure that can
learn complex mapping functions between a large amount of train-
ing samples (e.g. noisy speech) and their corresponding target values
(e.g. clean speech) [1, 2, 3,4, 5, 6]. In many research areas the Deep
Neural Network (DNN) topology is believed to capture a hierarchy
of features [7], which eventually provides a better performance in
supervised learning tasks. Dictionary-based models by using Non-
negative Matrix Factorization (NMF) [8, 9], on the other hand, learn
a set of basis vectors that correspond to the weights of a shallow
network. In general, we can say that the multiple hidden layers in
the deep network structure can learn some more abstraction about
the data at the cost of training and maintaining a larger amount of
parameters, which can easily amount to a few millions.

A properly trained neural network can do the source separation
job in a single feedforward step, which can be recursively defined
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for t-th data sample as follows:

aEL-H) (—W<L+1)Z£L)+b(L+l)7 Z§L+l) <_f(a1(5L+l))7
a(l) (;W(l)zglfl) 4}b(l)7 Zgl) (;g(az(tl)), (1)

where [ = {1,---, L 4+ 1} denotes the layer index. Therefore, zEL)

stands for the output of the last hidden layer while zﬁo) denotes the
input vector. g(-) and f(-) are the activation functions in the hidden
and the final layers, respectively. K ® js the number of units at I-
th layer. In a layer during the feedforward pass the weight matrix

wO e RE @xrt=1) is multiplied by the output from the previous

layer, and then the bias vector b e R¥ @ is added to it. Activation
function g(-) saturates the results by adding nonlinearity.

The main contribution of this paper is to develop an efficient
feedforward procedure that minimizes the computational and spatial
complexity of running and maintaining a DNN-based source sepa-
ration system. The deep learning advances in source separation sys-
tems cost more resources, such as memory and power, due to the
enlarged networks in terms of L and K O For example, now the
network has to compute the linear operation in (1) for more hidden
layers with larger W5 Since those resources can be constrained
in embedded devices, it could be prohibitive for them to perform
multiplications between large matrices with millions of elements,
although it is a fairly typical computation size in many DNNs.

We employ Bitwise Neural Networks (BNN) [10] to com-
press the network for an efficient implementation in a resource-
constrained environment. BNN’s drastically simplified feedforward
operation comes from the fact that in a BNN all the input and output
signals, weights and biases of the networks, and operations on them
are all defined in an efficient bitwise fashion, which we will review
more thoroughly in Section 2. If we represent the input signals with
bipolar binary numbers, i.e. +1 and —1, and we train the bipolar
binary parameters as well, the feedforward part can be done using
only bitwise logics such as XNOR and bit counting, instead of mul-
tiplication, addition, and a nonlinear activation (e.g. tanh) on the
usual floating or fixed-point variables. Note that since each weight
and node will be encoded with binaries, the space requirement is
also reduced compared to the multi-bit encoding schemes.

In all these procedures, we use binarized signals, so that the
network can work in a fully bitwise fashion. For example, hidden
unit output signals are already binarized thanks to the sign function
as the activation, though binarization of input and target variables
is an open question. In this paper, we propose a binarization tech-
nique, Quantization-and-Dispersion (QaD), which effectively en-
codes magnitude spectra. As for the target variable, Ideal Binary
Masks (IBM) are a natural choice, although the same QaD process
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Fig. 1. (a) The XOR problem and a pair of corresponding binary
hyperplanes that solves it. (b) A linearly separable problem where
bitwise networks need two hyperplanes to solve it. (c) A bitwise
network with zero weights to solve the problem with a single hyper-
plane. (d) Another linearly separable case with real-valued coeffi-
cients (0.5x1 — 0.5z2 + 3 — 0.5 > 0) that however needs more
than one hyperplanes in BNN. Some figures are from [10].

can potentially convert any real-valued target variables. Experimen-
tal results on some single-channel speech denoising tasks verify that
the proposed BNN system gives comparable results to the similarly
structured DNNs with near-continuous encoding strategy.

2. BITWISE NEURAL NETWORKS (BNN)

2.1. Background: Neural Networks with Bitwise Feedforward

Although it has been known that any Boolean function can be repre-
sented as a bitwise network with one hidden layer, e.g. by memoriz-
ing all the relationships [11], its training is an NP-complete problem
[12]. p-perceptron networks were proposed as a bitwise network,
but its topology does not allow a full connection between units [13].
Soudry et. al. recently proposed the Expectation Back Propagation
(EBP) algorithm to estimate the posterior probabilities for the bit-
wise parameters [14]. It is a parameter-free learning algorithm and
the discretization is convenient, yet it allows real-valued bias terms
and relies on the averaged outputs of multiple networks whose pa-
rameters are sampled from the estimated distribution.

BNN can be seen as one of different ways to achieve the fully
binary computation during the test time. More recently, there have
been more neural networks that learn fully binary network param-
eters such as BNN [10], BinaryConnect [15], and binarized neural
networks [16]. In the early stage of the neural network research, it
has been known that if we decrease the quantization level of already
trained network parameters, the performance of the network drops
significantly. One way to avoid this effect is to inject the quantiza-
tion error during the training phase, by using the quantized version
of the original continuous parameters during the feedforward so that
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the network is aware of the additional error introduced by the quan-
tization and can fix it during backpropagation [17, 18]. BNN adopts
the quantization noise injection technique to estimate its bitwise pa-
rameters.

2.2. Feedforward in BNNs
2.2.1. Notations and setup: bipolar binaries

Throughout the paper, we use bipolar binaries where the Boolean
values are represented as 41 and —1. Therefore, we use XNOR (we
denote it by ®) as a corresponding multiplier in this bipolar binary
domain. The bipolar binaries are more expressive than 0-1 binaries.
For example, in Figure 1 (a), the two hyperplanes (red dashes) can
be fully defined with bipolar binary coefficients and biases, while O-
1 binaries fail to do so. Moreover, with the bipolar binaries, we can
make use of zeros to explain the sparsity concept. With no loss of
generality, in this paper we use the 11 bipolar representation.

2.2.2. The feedforward process
In a BNN the feedforward pass is defined as follows:

-1

al’ =b"+ Y el ezY, Y
j

2 = sign(al"), @)

) = ) (i-1) - (1) (1)
720 e BKY WO ¢ pKYXKTY (0 ¢ gKY 50 ¢ 7K

where B = {—1,+1} and all lowercase letters are for scalar ele-
ments. ¢ and j indicate ¢-th input and j-th output units of a layer, re-
spectively. Bold characters are for vectors, and matrices are capital-
ized. We introduce the upper bar notation to distinguish the integer
or binary parameters of the BNN from the real-valued parameters
in (1). For convenience we drop the sample index. Sign function
is used as an activation, which will produce bipolar binaries as the
output. The sign function takes an integer agl) as its input, whose
value can be from —K® —1to K +1. ® and the sign activation
can be seen as special operations designed for the desired speed-up,
since they can replace the original real-valued multiplication and the
smooth step functions, respectively.

2.2.3. Linear separability and bitwise hyperplanes

Although there are cases where both a BNN and a real-valued net-
work can solve the same problem even with the same topology, in
general the BNN could need a larger network structure. For example,
for the XOR problem in Figure 1 (a), we can see that binary weights
and bias are good enough to define the hyperplanes, z1 —x2+1>0
and —x1+x2+1 > 0. On the other hand, in Figure 1 (b) BNN
necessitates multiple hyperplanes for a linearly separable problem
(for example, we can solve it with a single real-valued hyperplane
—0.1z1+z2+0.5>0), because binary coefficients cannot represent
those solutions. The BNN solves this problem by combining multi-
ple hyperplanes, but they will eventually increase the complexity.
Sparsity plays a great role not only in providing more freedom to
the hyperplanes, but in reducing the model complexity of BNNs, be-
cause BNN parameters are often redundant, too. By introducing the
sparsity in the coefficient, we can furn off some dimensions. Since
our coefficients are either +1 or —1, zeros are natural choice to ex-
press inactivity. For example, we allow zeros in the bipolar weights,
the BNN can turn off the x5 axis to come up with a solution with only
one hyperplane as in (c). We can employ either a sparse representa-
tion or another bit to encode a BNN with zero weights. First, with the



sparse representation we can only store the non-zero parameters and
their locations while skipping zeros. By doing so, in practice (e.g. in
hardware chips) these bipolar binaries will be implemented using 0-
1 binary values, where the activation in (2) is equivalent to checking
whether the number of +1°s is bigger than the half of the number of
input units plus 1. Or, if the weight matrix is not sparse enough to
afford the overhead, we can simply use an additional bit to encode
the parameter activity. We will use the sparsity concept in this work
as our BNN weight matrices turn out to be 95% sparse. However,
in general we expect that there are some problems that BNNs need
more hyperplanes, such as in Figure 1 (d), which is linearly separa-
ble though no BNN can solve it with a single hyperplane.

Note that this does not always mean that a BNN with more
network parameters is computationally more complex than a cor-
responding real-valued one, because a parameter or a unit in BNNs
calls for only one bit to encode. Hence, BNN’s resource usage can
be still lower than its corresponding real-valued network.

2.3. Efficiency of bitwise feedforward in hardware

It has been shown that bitwise feedforward operations with XNOR
and bit counting are efficient in hardware implementations. For
example, XNOR-Net showed that the bitwise convolutional feed-
forward for computer vision tasks uses about 1.5% of the memory
space that a comprehensive double-precision network spends and 20
to 60 times faster in computation [19]. It is also shown that bina-
rized weights can lead to 7 times faster feedforward than an ordinary
floating-point network for MNIST classification, or 23 faster large
matrix multiplication tasks on GPU [16]. Also, compared to the sin-
gle precision multiplier, XNOR operation is 200 times cheaper in
FPGA implementations [20, 21]. Based on this literature, we as-
sume that the proposed BNN will also be significantly efficient in
hardware implementations.

2.4. Training BNNs

We can train a BNN by using two sequential runs of the Stochas-
tic Gradient Descent (SGD) procedure. We first train an ordinary
real-valued network, whose network structure is the same with the
desired BNN. We use its weights to initialize the BNN parameters in
the subsequent step. In the second phase of training we finally learn
the bitwise weights using a noisy feedforward pass.

2.4.1. The first round: learning a weight-compressed network

First, we train a real-valued network that takes binary inputs (we will
see how to binarize audio signals in Secion 3). In this first-round,
we wrap the weights and bias with the hyperbolic tangent function,
tanh(-), so that the weights are bounded between —1 and +1. Since
tanh(-) is used for the activation as well, the network can be seen
as a relaxed version of the corresponding bipolar BNN. The weight-
compressed forward pass is defined as follows:

K-1)

Z tanh(w (l) (l Ly

where all the values and operations are real-valued. Therefore, the
only difference between (3) and (1) is the use of tanh for both weight
compression and in place of all the activation functions.

During the backpropagation procedure weight compression in-
troduces an additional factor. In the I-th layer the backpropagation

al = tanh(b\") + , 2l = tanh (ai), 3)
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error for the n-th training sample is calculated using the compressed
versions of the weights:

K (U+1)

)=( Z tanh (w7 (n) ) - (1-tanh (a}) ). @)

Finally, the gradients are defined as follows:

Vwl; = (Yol 0) - (1 - tanb® (wh)),
Vbl = (iaﬁ(n)) (1~ tann® (b)) ).

Note that from the chain rule the derivatives of tanh is additionally
multiplied. The summation over n is defined by the minibatch size.

5(1)

(&)

(6)

2.4.2. The second round: noisy feedforward

Now that we have trained a real-valued network with a properly
ranged weights, the next step is to train the actual bitwise network.
The training procedure is similar to the ones with quantized weights
[17, 18], but now all the input signals and weights are constrained to
be bipolar binaries, so that the operations on them are bitwise. The
full binary setting is of particular importance since it can avoid the
computations in-between fixed-point or floating-point variables.

Noisy feedforward pass: To this end, we first initialize all the
real-valued parameters, W and b, with the ones learned from section
2.4.1, but using their compressed version, e.g. W <— tanh(W). At
every epoch, based on the pre-defined sparsity value p, the boundary
B® is calculated from the following equation:

(KP4 K Op =3 T(wijl < 8)+ 3 21 < ), )

3

Where Z(-) is an indicator function. Using /3 (), we refresh the bina-
rized parameters W and b as follows:

> “0y_
-8, b;

+1 if w(l)

—1 if w(lg <
0 otherw1se

+1 it b > 8
-1 if bV < -8
0 otherwise

o) = . ®

By doing so, we can achieve the desired sparsity p. This noisy feed-
forward step can be seen as a way to let the network be aware of the
additional error introduced by the binarization procedure, so that the
backpropagation step can fix it. Note that we use the upper bar no-
tation to signify binarized parameters. Once the binarization of the
parameters is done, we use them for the (noisy) feedforward process
during training instead of the real-valued versions.

Backpropagation: In the [-th layer we calculate the backpropa-
gation error and the gradients:

K+

5§.l>(n):( 3 wgf;”agl“)(n)) : (1—tanh2 (ag-)), )

> 6 ()Y, > 6 ().

n

Vu!) = b = (10)

Note that in the calculation the bitwise parameters with a bar on
the top are used. In this way, the gradients and errors properly take
the binarization of the weights and the signals into account. Also,
the non-differentiable sign activation function is relaxed with tanh,
which introduces the derivative of tanh. Since the gradients can



get too small to update the binary parameters W and b, we instead
update their corresponding real-valued parameters,

l l l l l l
wl) — wl) O b D — e

with 7 as a learning rate parameter. Once they are updated, in the
next epoch they are used to define the binarized parameters using
the newly calculated 3.

—nVuw

3. BINARIZATION OF SIGNALS

3.1. Quantization and Dispersion (QaD)

Since a BNN takes a bit pattern as the input, we need a binariza-
tion technique to encode any real-valued input signals. We found
that Lloyd-Max’s quantization [22] is useful, which could convert
an input magnitude into a fixed-point value and feed it into an in-
put unit. Instead of this integer input string, we treat each bit of the
fixed-point quantized value as a binary feature. For example, after
encoding the f-th magnitude coefficient of a noisy speech spectrum
X into 4 bits, we disperse the 4 bits into 4 corresponding input units.
Therefore, the BNN takes a 4 F'-dimensional binary vector, where F'
is the original number of coefficients in the spectrum.

3.2. Ideal Binary Masks (IBM)

As for the output units it is natural to form a softmax layer to solve
classification problems as in [10]. On the other hand, the source
separation problems often form continuous target variables such as
the Ideal Ratio Masks (IRM) [23], for which we believe that the same
QaD technique can be employed to convert them into bit patterns,
too. In this paper, we conveniently make use of the IBM as our
target, which is a natural choice for us to binarize the target [3]. We
leave the investigation of QaD for the continuous target variables
to future work. Finally, the prediction error £ can be measured as

follows: £(n) = 3 f{(HD (ti(n) — 25T (n))?, where t;(n) is

an element of the bipolarized IBM mask.

4. EXPERIMENTS

4.1. Experimental Setups

We prepare 121,280 training spectra (18,020 of them are used for
validation). Twelve gender-balanced TIMIT speakers are chosen for
training, each of which contributes five chosen utterances, totalling
60 clean speech signals. They are then mixed with ten different non-
stationary noise signals proposed in [24] with 0 dB Signal-to-Noise
Ratio (SNR) to form 600 noisy utterances. Among them, we set
aside 100 utterances as a validation set. By applying Short-Time
Fourier Transform (STFT) with a Hann window of 1024 points and
a 75% of overlap. For testing, another four speakers are chosen and
mixed with the same set of noise signals, but from different parts to
make sure the test mixtures are not seen during training. We apply
a 4-bit QaD procedure to these spectra as an input to the BNN sys-
tems. We found p = 0.95 optimal via validation. All signals are
with sampling rate 16 kHz. We train three different kinds of neural
networks that predict the IBM of the given magnitude spectrum:

e Baseline: The baseline networks take the ordinary 513 dimen-
sional real-valued magnitude spectrum as its input. For training this
network the first round training algorithm is used, where the addi-
tional weight compression works like max-norm feature in [25]. It
employs dropout with 0.95 for the first layer (dropping 5%) and 0.8
for the other layers as the parameter.
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Systems Topology | SDR SIR SAR STOIL
Baseline with | 1024x2 | 10.17 | 26.69 | 10.45 | 0.7880
original input | 2048x2 | 10.57 | 26.25 | 10.88 | 0.8060
Baseline with | 1024x2 9.80 | 27.00 | 10.08 | 0.7790

binary input 2048%x2 | 10.11 | 26.61 | 10.43 | 0.7946
BNN 1024x2 9.35 | 2338 | 9.82 | 0.7819
2048x2 9.82 | 23.62 | 10.30 | 0.7861

Table 1. Speech denoising performance of the proposed BNN-based
separation system compared with the other real-valued networks.

e Baseline with binary input: This setup is equivalent to the first
round of the BNN training. The difference between this and the
baseline is that the first round networks take the 4 x 513 4-bit QaD
vectors as their input. The prediction results from these first round
networks will serve as an upper bound of the separation performance
of a real-valued network with the binarized input. Also, the learned
parameters will be reused to intialize the second round parameters.

e The proposed BNN: Here we combine the first round results
(baseline with binary input) and the second round.

Validation determines the learning rate which usually starts from
10~7 or 107 and gradually decreases. Minibatch and the momen-
tum parameter are set to be 100 frames and 0.95, respectively.

4.2. Discussion

Table 1 lists the speech denoising performance of the systems in
terms of Signal-to-Distortion Ratio (SDR), Signal-to-Interference
Ratio (SIR), Signal-to-Artifact Ratio (SAR) [26], and Short-Time
Objective Intelligibility (STOI) [27]. First, we can see that doubling
up the number of hidden units generally improves SAR, which even-
tually improves SDR as well. STOI gets better with more hidden
units, too. For example, BNN with 2048 hidden units catches up the
performance of 1024 x 2 DNN with binary input (9.82 versus 9.80
dB in SDR and 0.7861 versus 0.7790 in STOI). If we compare the
effect of the QaD binarization (the baseline systems with original
magnitudes versus with the QaD input), we see a slight performance
drop in both SDR (0.37 dB and 0.47 dB for the 1024 and 2048
hidden units, respectively) and STOI (0.009 and 0.0114). Starting
from there, BNN catches up with the performance of the baseline
system with binarized input by a margin 0.45 dB and 0.29 dB for the
1024 and 2048 units, respectively. The 20482 BNN lost 0.0045,
but 1024 x 2 happens to improve STOI by 0.0029.

Overall, we see that the proposed BNN that is fully binarized
from its input to the output shows reasonable performance compared
to its corresponding real-valued networks. We believe that our ex-
periments on the Fourier spectra and IBM prove the concept well
enough and are ready to be extended to the other types of features,
target variables, and the choice of context window, since the QaD
technique and the BNN training methods work for general purposes.

5. CONCLUSION

In this paper we proposed a novel bitwise source separation system
by employing BNNs, which redefined the feedforward pass in a bit-
wise fashion. A two-stage training strategy was introduced to pre-
pare a set of compressed weights, and then to initialize the BNN pa-
rameters that are eventually binarized during the feedforward pass.
By binarizing the input magnitude spectra with the QaD technique
and having IBM as the target, we showed that BNN performs well
for the speech denoising job with a minimal computational cost.
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