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ABSTRACT

Deep attractor networks (DANs) are a recently introduced method
to blindly separate sources from spectral features of a monaural
recording using bidirectional long short-term memory networks
(BLSTMs). Due to the nature of BLSTMs, this is inherently not
online-ready and resorting to operating on blocks yields a block
permutation problem in that the index of each speaker may change
between blocks. We here propose the joint modeling of spatial
and spectral features to solve the block permutation problem and
generalize DANs to multi-channel meeting recordings: The DAN
acts as a spectral feature extractor for a subsequent model-based
clustering approach. We first analyze different joint models in
batch-processing scenarios and finally propose a block-online blind
source separation algorithm. The efficacy of the proposed models is
demonstrated on reverberant mixtures corrupted by real recordings
of multi-channel background noise. We demonstrate that both the
proposed batch-processing and the proposed block-online system
outperform (a) a spatial-only model with a state-of-the-art frequency
permutation solver and (b) a spectral-only model with an oracle
block permutation solver in terms of signal to distortion ratio (SDR)
gains.

Index Terms — blind source separation, deep learning, multi-
channel, block-online

1. INTRODUCTION

Acoustic blind source separation is a challenging problem, which
has been studied for many years [1]. The aim is to develop a system
that extracts the individual source signals from speakers talking con-
currently. In a multi-channel setup the blind source separation prob-
lem can be addressed with spatial clustering approaches [2, 3, 4].

In contrast, when only a single channel is available, separation
has to rely on spectral features. One way is to employ dictionary-
based approaches modeling individual speaker characteristics, i.e.
non-negative matrix factorization (NMF) [5]. More recently, deep
clustering (DC), a deep learning based single-channel source sep-
aration system was published, which is able to generalize to un-
seen speakers and does not assume the number of test speakers to
be known at training time [6]. This is possible, since the network en-
codes the input spectrogram into embedding vectors that can then be
clustered subsequently. DANs simplified the training recipe further
and enables training with a signal reconstruction loss [7].

This work was performed while Lukas Drude was an intern at NTT Com-
munication Science Laboratories, NTT Corporation, Kyoto, Japan.

However, there are few systems that utilize both spatial and
spectral features. One example uses 2D-HMMs [8] to combine
spectral features with spatial observation models. A Gaussian mix-
ture model (GMM)-based spectral model is combined with spatial
features in [9]. In [10] spectral features are modeled by an NMF,
while spatial features are modeled by a full rank covariance model.
More recently, [11] proposed the integration of a deep neural net-
work (DNN) based mask estimator and a complex angular-central
Gaussian mixture model (cACGMM) to extract a single source.
In [12] a DNN refines the source estimate in each expectation max-
imization (EM) iteration. In [13] we proposed modeling spectral
features with a DC model and spatial features with a time-variant
complex Gaussian mixture model (TV-cGMM).

Most source separation studies focus on completely overlapping
speech [6, 7] and a duration of exactly one utterance. In this contri-
bution we focus on longer mixtures with possible speech pauses to
extend DC and DAN based systems to more realistic meeting sce-
narios. As a side effect, the produced masks can be used for speaker
diarization. To be able to continuously separate an observed signal,
block-online or online processing is required [14, 15, 16]. However,
since both DC [6] and DANs [7] rely on BLSTMs, a generaliza-
tion to online-processing is challenging. Even if we resort to block-
online processing, the encoding network is optimized to separate a
single mixture. It is not guaranteed that the topology of the embed-
ding space will remain the same on a subsequent block of a possi-
bly longer meeting. A block permutation problem arises whereby
the speaker index may be permuted from block to block. Although
this problem can also be addressed with speaker identification tech-
niques, we here wish to demonstrate how to use spatial cues to solve
the block permutation problem.

Short time Fourier transform (STFT) based spatial clustering
models operate on each frequency independently. This yields the
frequency permutation problem [3]. To jointly solve both problems,
we formulate an integrated probabilistic graphical model to leverage
spectral features to address the frequency permutation problem and
spatial features to deal with the block permutation problem.

2. RELATION TO PRIOR WORK

In [13] an integration between DC [6] and a TV-cGMM has been
proposed for an offline setup for reverberant but noise-free scenar-
ios. In contrast, we here generalize the setup to (a) noisy scenarios
and (b) block-online processing. The segment permutation prob-
lem did not occur in [13], since the whole model operated on a sin-
gle block. The weighting between spatial and spectral observation
model is avoided here.
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(a) Fixed spatial prior model (Sec. 6.1). The
posterior mask of a TV-cGMM is used as a
prior for a segmented GMM.
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(b) Fixed spectral prior model (Sec. 6.2). The
posterior mask of a segmented GMM is used
as a prior for a TV-cGMM.
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(c) Full update model (Sec. 6.3). All param-
eters are estimated in a joint EM framework.
Dashed boxes indicate conventional models.

Fig. 1: Overview of integrated batch processing models. Preprocessing blocks are shown in blue. Green circles denote random variables of
the probabilistic graphical model, where the observed random variables are doubly circled. Red boxes indicate parameters to be estimated
during EM iterations.

3. SIGNAL MODEL

A convolutive mixture of K independent source signals stfk, cap-
tured by D sensors is approximated in the STFT domain:

ytf =
∑
k

hfk stfk + ntf =
∑
k

xtfk + ntf , (1)

where ytf , hfk ntf , and xtfk are the D-dimensional observed sig-
nal vector, the unknown acoustic transfer function vector of source
k, the noise vector, and the source image at the sensors, respectively.
Furthermore, t and f specify the time frame index and the frequency
bin index, respectively. Since speech signals are sparse in the STFT
domain, we may assume that a time frequency slot is occupied either
by a single source and noise or by noise only.

4. DEEP ATTRACTOR NETWORK

DANs [7] encode a single channel mixture spectrogram to embed-
ding vectors etf for each time frequency bin. The intention is to
train the network such that embeddings belonging to the same source
move closer together and embeddings belonging to different sources
move further apart in the embedding space. In particular, a signal
reconstruction loss for training the DAN is used although we later
use the embeddings for clustering, which is not part of the cost func-
tion. During testing k-means is employed to cluster the embedding
vectors. The motivation behind using DANs instead of DC is that
the loss function can be evaluated faster during training and allow
end-to-end training for future research.

5. CONVENTIONAL BATCH MODELS

In this section we present a spatial model operating on the entire
mixture and a spectral model operating on each block independently.
They form the basis of the models in Sec. 6. The motivation to an-
alyze a spectral model on segments but a spatial model on the com-
plete mixture is that there are many online or block-online formula-
tions of spatial models, but DC and DANs are not yet generalized to
the online case.

5.1. Time-variant cGMM for spatial features

The TV-cGMM is a very competitive spatial clustering approach [17].
Its efficacy was shown in the CHiME 3 and CHiME 4 challenges,
where it was used in both winning systems.

It is related to a complex Gaussian mixture model but differs in
that a time dependent variance parameter σtfk is factored out of the
time-independent spatial correlation matrix Rfk. The observation
model is then given byNC(ytf ; 0, σtfkRfk).

The updates in the M-step with Γfk =
∑
t γ

spatial
tfk are:

σtfk =
1

D
yH
tfR

−1
fkytf , Rfk =

1

Γfk

∑
t

γspatial
tfk

ytfy
H
tf

σtfk
. (2)

The posterior mask is obtained with the following E-step:

γspatial
tfk =

p(ytf ;σtfk,Rfk)∑
k′
p(ytf ;σtfk′ ,Rfk′)

. (3)

Since the model just captures the features of a single frequency, the
result is affected by the frequency permutation problem [3]. The
effect of optional mixture weights is analyzed in Sec. 9.

5.2. Segmented spectral GMM for spectral features

Instead of k-means, as in the original DAN formulation [7], we em-
ploy a GMM for a more statistically sound formulation and better
integration into joint models.

The segmented spectral GMM models the embedding vectors
of each block n independently: N (etf ;µnk,Σnk). The parameter
updates are given by the M-step:

µnk =
1

Γnk

∑
t∈Tn,f

γspectral
tfk etf , Γnk =

∑
t∈Tn,f

γspectral
tfk , (4)

Σnk =
1

Γnk

∑
t∈Tn,f

γspectral
tfk (etf − µnk)(etf − µnk)T, (5)

where Tn are all time frame indices belonging to block n. In prac-
tice, we use scaled identity covariance matrices to avoid singulari-
ties. The E-step to obtain the posterior masks is given as follows:

γspectral
tfk =

p(etf ;µnk,Σnk)∑
k

p(etf ;µnk′ ,Σnk′)
, (6)

with t ∈ Tn. Since the result is independently obtained for each
block, it is affected by the block permutation problem. The effect of
optional mixture weights is analyzed in Sec. 9.
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6. PROPOSED INTEGRATED BATCH MODELS

This section proposes several ways to jointly solve the block permu-
tation and frequency permutation problems described in the previous
sections. All of the proposed methods fuse spectral and spatial in-
formation in different ways. The methods introduced here assume
a batch-mode setting. A block-online processing approach will be
introduced in the next section based on the findings in this section.

6.1. Fixed spatial prior integration model

One possible way of solving the frequency permutation problem is to
use the (possibly permuted) posterior mask from Sec. 5.1 as a time
dependent but fixed prior (πtfk := γspatial

tfk ). Then, the spectral pa-
rameters (Eqs. (4) and (5)) and the possible permutation of the fixed
prior can be updated as illustrated in Fig. 1a. The E-step is modi-
fied to account for the fact that the spatial prior is still affected by
frequency permutation: The expected complete data log-likelihood
is maximized to simultaneously obtain the posterior mask and the
alignment Πf :

Πf = argmax
Π

{∑
t,k

Atfk(Π)∑
k
′
Atfk′ (Π)

· lnAtfk(Π)

}
, (7)

with Atfk(Π) = πtf,Π(k) p(etf ;µnk,Σnk). (8)

Again, t ∈ Tn. A greedy search as in [3] can be used instead of
an exhaustive search. Although the segment permutation problem is
not specifically addressed here, due to the fact that the spatial mod-
els are shared across all segments, the class dependent mean and
covariance parameters of the spectral model are aligned automati-
cally. After the optimal permutation Πf is found, the new posterior
mask γtfk is given by the fraction in Eq. (7).

6.2. Fixed spectral prior integration model

Here, the possibly block-permuted posterior mask of the segmented
spectral GMM of Sec. 5.2 is used as a fixed prior πtfk := γspectral

tfk as
illustrated in Fig. 1b. The fixed prior therefore relates the models of
different frequencies, leading to an aligned joint solution. This idea
generalizes permutation free clustering [18], where a time dependent
(but frequency independent) mixture weight is used to link models
of different frequencies together.

By analogy with the previous section, the E-step with permuta-
tion alignment yields the alignment Πn:

Πn = argmax
Π

{ ∑
t∈Tn,f,k

Btfk(Π)∑
k
′
Btfk′ (Π)

· lnBtfk(Π)

}
, (9)

with Btfk(Π) = πtf,Π(k) p(ytf ;σtfk,Rfk). (10)

After convergence, the fraction in Eq. (9) is the posterior mask γtfk.

6.3. Full update model

Although the aforementioned models both address the dual permu-
tation problems, it can be expected that updating all spatial and spec-
tral model parameters should yield even better source separation per-
formance. The joint model is illustrated in Fig. 1c.

In the full update model, the M-step consists of Eqs. (2), (4)
and (5). The E-step with permutation alignment is then given as
follows. It is similar to Eq. (7), but includes the spectral conditional
probability densities instead of the fixed priors. Again the posterior

Algorithm 1 Block-processing

1: Split into N blocks and run model of Sec. 6.3 on the first block.
2: Apply beamforming to the first block as in [13].
3: for n from 1 to N do
4: Forget all parameters but Rn−1,fk and Φn−1,fk.
5: Initialize σtfk with Eq. (2) using Rn−1,fk.
6: Initialize γtfk with Eq. (3).
7: while not converged do
8: Obtain µnk and Σnk with Eqs. (4) and (5).
9: Incremental update forRnfk with Eq. (13).

10: Variance σtfk update with Eq. (2).
11: PE-step from Eq. (11) yields γtfk and Πf .
12: Obtain spatial covariance matrices with Eq. (14).
13: Apply beamforming on current block as in [13].

mask γtfk can then be identified as the fraction in Eq. (11) after the
optimal permutation Πf has been found (t ∈ Tn):

Πf = argmax
Π

{∑
t,k

Ctfk(Π)∑
k
′
Ctfk′ (Π)

· lnCtfk(Π)

}
, (11)

with Ctfk(Π) = p(etf ;µnk,Σnk)

· p(ytf ;σtf,Π(k),Rf,Π(k)) (12)

7. BLOCK-ONLINE MODEL

To formulate a block-online model as in Alg. 1, we generalize the
full update model of the previous section. Summary statistics are
obtained with Eqs. (2), (4), (5), and Γnfk =

∑
t∈Tn γtfk. Since the

spectral statistics are only valid in one block, we drop the informa-
tion after processing a block. We only carry over the spatial charac-
teristics Rfk to automatically solve the block permutation problem
of the next block with Γtotal

nfk = Γtotal
n−1,fk + Γnfk:

Rnfk =
Γtotal
n−1,fk

Γtotal
nfk

Rn−1,fk +
1

Γtotal
nfk

∑
t∈Tn

γtfk
σtfk

ytfy
H
tf . (13)

Defining the recursion like this will yield a model that never
forgets past information. This is meaningful if the acoustic scene is
expected to be constant as in [19]. If desired, an additional forgetting
factor can be applied to allow the model to adapt to slowly changing
geometric settings.

8. BEAMFORMING

The generalized eigenvalue (GEV) beamformer has proven to be
robust with respect to numerical instabilities and yields great im-
provements in terms of both signal to noise ratio (SNR) gain and
word error rate (WER) reduction, while often outperforming the
frequently used minimum variance distortionless response (MVDR)
beamformer [20, 21]. Within this work, we employ the GEV beam-
former as a way of separating concurrent target speakers as in [13].
For block-online processing one beamforming vector per block and
frequency is obtained. The spatial covariance matrices are obtained
by a smoothed update similar to Eq. (13):

Φtarget
nfk =

Γtotal
n−1,fk

Γtotal
nfk

Φtarget
n−1,fk +

1

Γtotal
nfk

∑
t∈Tn

γtfkytfy
H
tf . (14)

The eigenvalue decomposition can then be performed on each block.
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9. EVALUATION

The DAN was trained on clean WSJ [22] mixtures according to file
lists provided by [6] with a sampling frequency of 8 kHz and an
STFT size and shift of 512 and 128, respectively. In contrast to
the training recipe in [7], we achieved best results with a tanh non-
linearity after the last layer. We merged the forward and backward
BLSTM streams by concatenation and applied sequence normaliza-
tion [23]. To test the proposed integrated models, we generated 1000
mixtures of two speakers per setting. The settings differ in terms of
active speech ratio, such that the overlap as defined by a crude voice
activity detector varies. An active speech ratio of 100 % means that
all speakers speak concurrently without pauses. The utterances were
reverberated with generated room impulse responses [24] and ran-
dom reverberation times in the range of 150 – 200 ms. We used the
CHiME 3 array geometry (planar, minimum distance 10 cm) with an
unconstrained random array rotation in space. Realistic CHiME 3
background noise with matching spatial characteristics was added
with a per speaker input SNR in the range of 8 – 12 dB, where τ is
the sample index in time domain and d is the sensor index:

SDRin = 10 dB log10


∑
τ,k,d

|skd(τ)|2∑
τ,k′,d

|sk′,d(τ)|2 +
∑
τ,d

|nd(τ)|2

 . (15)

Similarly, the output SDR were calculated intrusively [25] in time
domain, where the beamforming vector for speaker k is applied to
the images xtfk,

∑
k′ xtfk′ with k′ 6= k, and ntf , separately. We

refrained from using BSSEval [26] since due to the simulation setup
all the images were available and no additional estimation was neces-
sary. All the proposed models address additive noise by introducing
an additional noise class.

9.1. Evaluation of batch models

Tbl. 1 shows batch-processing results with different speaker over-
laps. The TV-cGMM with frequency permutation alignment as in [3]
serves as a competitive baseline (denoted by “Prior: None”). The
performance of the model improves, when a frequency dependent

Table 1: SDR gain for all batch-mode models. Baseline methods are
shown in gray. All segments contain 400 frames (≈ 3.2 s).

Active Speech Ratio: 73 % 60 % 47 %

Average Duration: 16.9 s 27.0 s 36.4 s

Model Prior SDR gain/dB

TV-cGMM+[3]
None 16.9 15.5 13.3

fk 17.3 16.6 15.4

DAN+GMM+Oracle Align
None 15.8 15.8 15.5

nk 15.7 15.6 15.4

DAN+Fixed Spatial Prior tfk 17.3 16.7 15.1

DAN+Fixed Spectral Prior tfk 17.1 17.0 16.1

DAN+Full Update Model
None 17.9 17.4 16.3
fk 17.8 17.4 16.3

class affiliation prior is used instead of no prior as in Eq. (3) (de-
noted by “Prior: fk”). The complementary baseline is a segmented
GMM on deep attractor embeddings with oracle block permutation
alignment. The performance is very similar with and without an ad-
ditional prior.

Both the fixed spatial and fixed spectral prior models outperform
the baseline in most cases. Furthermore, they resolve the frequency
permutation and block permutation, such that the frequency permu-
tation alignment of [3] and oracle block permutation alignment can
be avoided altogether.

Finally, the full update model outperforms all other models both
with and without an additional prior. It is also noteworthy that the
performance degrades less severely with a lower active speech ratio
than the TV-cGMM in our setup. An additional gain of approxi-
mately 0.2 dB can be obtained by carefully tuning the influence of
each observation model as in [13]. In this work we refrained from
any heuristic tuning to keep the model concise.

9.2. Evaluation of block-online models

Tbl. 2 shows the block-online models on the same three datasets.
Again, each model is evaluated with and without an additional prior.
In the block-online case the full update model outperforms the other
models by an even higher margin (up to 1.5 dB) although the lower
active speech ratio scenario shows the limitations of both the TV-
cGMM and the full update model. Specifically, the full update model
works better, when no additional prior is used. The drop in perfor-
mance compared with the batch results is greater with a low speech
overlap since the first block does not always contain all speakers.

10. CONCLUSION

In this contribution we demonstrated how spatial and spectral fea-
tures can be integrated to solve both a frequency permutation prob-
lem and a block permutation problem. We introduced the segmented
batch models as a necessity to generalize deep learning based single-
channel batch models to multi-channel block-online processing. In-
tegrated block-online processing outperforms both state of the art
baseline approaches and is able to solve the block permutation prob-
lem. Future research will leverage speaker identification features to
overcome the block permutation problem as regards moving speak-
ers and evaluate its effectiveness in terms of automatic speech recog-
nition (ASR) performance.

Table 2: Block-online results in SDR gain. Baseline methods are
shown in gray. The first block consists of 400 frames (≈ 3.2 s), all
consecutive blocks have 200 frames (≈ 1.6 s).

Active Speech Ratio: 73 % 60 % 47 %

Average Duration: 16.9 s 27.0 s 36.4 s

Model Prior SDR gain/dB

TV-cGMM+[3]
None 15.7 14.3 11.6

fk 16.1 15.0 12.5

DAN+GMM+Oracle Align
None 13.7 14.0 13.7

nk 13.9 13.8 13.5

DAN+Full Update Model
None 17.4 16.5 14.0
fk 17.1 16.2 13.4
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