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ABSTRACT

Deep learning based approaches have achieved promising
performance in speaker-dependent single-channel multi-
speaker speech separation. However, partly due to the la-
bel permutation problem, they may encounter difficulties in
speaker-independent conditions. Recent methods address
this problem by some assignment operations. Different from
them, we propose a novel source-aware context network,
which explicitly inputs speech sources as well as mixture sig-
nal. By exploiting the temporal dependency and continuity of
the same source signal, the permutation order of outputs can
be easily determined without any additional post-processing.
Furthermore, a Multi-time-step Prediction Training strategy
is proposed to address the mismatch between training and
inference stages. Experimental results on benchmark WSJ0-
2mix dataset revealed that our network achieved comparable
or better results than state-of-the-art methods in both closed-
set and open-set conditions, in terms of Signal-to-Distortion
Ratio (SDR) improvement.

Index Terms— Speech Separation, Deep Learning, Label
Permutation Problem

1. INTRODUCTION

Multi-speaker single-channel speech separation is the task of
estimating the individual sources from a monaural mixture
of speech. It has important real-world applications including
robust automatic speech recognition, multi-speaker meeting
transcription and audio/video captioning. Unlike human lis-
teners who can concentrate on separate sources in an acoustic
mixture, automatic speech separation is still a challenging and
unsolved problem [1].

Over the past few decades, significant efforts have been
devoted to speech separation [2, 3, 4, 5, 6, 7]. Before the
emergence of deep learning, one of the most popular sep-
aration techniques were based on Computational Auditory
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Scene Analysis (CASA) [2, 3]. In CASA, segmentation
and grouping rules, which are typically hand-engineered or
heuristic, are utilized to group Time-Frequency (T-F) units
belonging to the same speaker. Another technique is Non-
negative Matrix Factorization (NMF) [4]. In NMF, a mixture
is decomposed into specific activations using a set of non-
negative bases. However, limited success has been achieved
for multi-speaker separation. Recently, some deep learning
approaches have been proposed, casting speech separation
as a multi-class regression problem [5, 6, 7]. Despite their
effectiveness at speaker-dependent separation, they often
encounter difficulties with speaker-independent separation,
partially in the label permutation problem [8], which will be
detailed in Section 2.

More recently, several approaches have been proposed to
address the label permutation problem, including the follow-
ing: In [9, 10], instantaneous energy pattern or speaker infor-
mation is used to determine speaker assignment. In [11, 8],
Permutation Invariant Training (PIT) and utterance-level PIT
determine the speaker order according to the lowest separa-
tion error within all possible permutations. In [12, 13], the
Deep Clustering (DPCL) method performs label assignment
using the clustering algorithm in a deep embedding space.
In [14, 15], Deep Attractor Network (DANet) creates attrac-
tor points in embedding space to determine the source assign-
ment. These methods determine source assignment mainly
based on similarity measurements in embedding space, or in
the original spectral space (e.g., distance of embedding vec-
tors in DPCL and DANet, Mean Square Error (MSE) between
estimated and target magnitude spectra in PIT).

Unlike those methods, we propose a novel source-aware
context network for single-channel multi-speaker speech sep-
aration. As shown in Fig. 1, the proposed network explicitly
inputs speech sources as well as mixture, and directly outputs
estimated sources, which are fed back as input sources for
processing during the next time step. By exploiting depen-
dency and continuity of the same source (important acoustic
cues indicated by Auditory Scene Analysis (ASA) [2]), the
permutation order of outputs can be easily determined with-
out any additional operation. More details will be described
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Fig. 1. An overview of the network G implementing Eqn. (4) for a two-speaker separation task. GAU, FC, MLP, sigm, c©,
s©, ⊗ and ⊕ represent Gated Activation Unit [16], full connection, multi layer perceptron, sigmoid activation, concatenation,

equally slicing operation, element-wise multiplication and addition respectively.

in Section 3. A Multi-time-step Prediction Training (MPT)
strategy is further proposed to alleviate the mismatch between
training and inference stages. Specifically, at each time step,
network outputs are fed back as inputs for the next time step.
This repeats across multiple time steps, generating a sequence
of estimated sources in a recursive manner.

To evaluate the effectiveness of the proposed network, we
conducted extensive experiments on the benchmark WSJ0-
2mix dataset [12]. Results revealed that the MPT strategy
allows our proposed network to outperform state-of-the-art
methods in both closed-set and open-set conditions with simi-
lar or comparable experimental settings [12, 13, 14, 15, 11, 8].

2. LABEL PERMUTATION PROBLEM

As mentioned, conventional deep learning based methods
commonly cast multi-speaker separation as a multi-class re-
gression problem. For ease of description, we will focus
on two-speaker situations [11, 8]. Generally, the separation
model H can be formulated as

x̂1,t, x̂2,t = H(yt+F , . . . ,yt−P ) (1)

where x̂1,t and x̂2,t are the t-th estimated magnitude spec-
tra of two sources, yt is the observed t-th magnitude spec-
tra of the mixture, which is generated as a waveform yn =
x1,n + x2,n, and the receptive field length of future and past
spectra are denoted as F and P respectively. The model H is
used to estimate the t-th clean magnitude spectra of the cor-
responding sources, i.e., x1,t and x2,t.

During training, the error between targets [x1,t,x2,t]
and outputs [x̂1,t, x̂2,t] needs to be computed for back-
propagation. However, for conventional deep learning based

approaches, using only input y, it is unknown in advance
whether the outputs order is [x̂1,t, x̂2,t] or [x̂2,t, x̂1,t]. This
problem is referred to as the label permutation problem [8].
DPCL, DANet and PIT methods can all be represented by
Eqn. (1). The difference is that the outputs order (and la-
bel permutation) is determined by additional operations such
as assignment according to the lowest separation error, or
clustering in a deep embedding space.

3. SOURCE-AWARE CONTEXT NETWORK

Unlike existing methods, our proposed model simultaneously
and recursively estimates two sources by modeling the con-
ditional distribution of current sources’ spectra, given past
sources’ spectra and mixture spectra, i.e.,

x̂1,t ∼ p(x1,t|x1,t−1, . . . ,x1,t−P ;x2,t−1, . . . ,x2,t−P ;

yt, . . . ,yt−P )
(2)

x̂2,t ∼ p(x2,t|x2,t−1, . . . ,x2,t−P ;x1,t−1, . . . ,x1,t−P ;

yt, . . . ,yt−P )
(3)

Therefore, according to Eqns. (2-3), the regression model G
can be defined as

x̂1,t, x̂2,t = G(x̃1,t−1, . . . , x̃1,t−P ; x̃2,t−1, . . . , x̃2,t−P ;

yt, . . . ,yt−P )
(4)

where x̃k,t′ = x̂k,t′ , ∀k = {1, 2}, t′ = t − P, . . . , t − 1
during inference. As a result, without additional operations,
the outputs order is determined in advance – just the same as
input sources. It is worth noting thatG does not require future
mixture spectra during inference, and Eqn. (4) can be easily
extended to multiple speaker separation tasks.
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3.1. Network Architecture

Inspired by WaveNet [17], the network G implementing
Eqn. (4) is designed as shown in Fig. 1. G consists of three
parts: an input block, several stacked hidden blocks and an
output block, which will be described below.

Input Block. In order to capture ASA acoustic cues like
proximity in frequency and time, harmonicity, onset and off-
set [2], as shown with a blue rectangle in Fig. 1 and detailed
in Table 1, the input block extracts local temporal and spectral
features of neighboring spectra with 2D convolutional layers
followed by PReLUs [18]. Experiments use an 8 kHz sample
rate for all waveforms, from which µ-law companded [19]
magnitude spectra of dimension 129 were computed at 32 ms
frame length with 10 ms shift, resulting in a feature map width
of 129 in the input layers. Unlike log magnitude spectra, µ-
law companded spectra lie in the range of [-1, 1], which is
more suitable for a feedback-structure model.

Table 1. Input block details of COVy and COVxz. Feature
map shapes in Input and Reshape layers are denoted in (chan-
nel, height, width) format. Convolution settings are denoted
in kernel–stride–pad–channel format.

Layers COVy COVxz

Input (1,3,129) (1,2,129)
Conv1 (2,8)–(1,4)–(0,2)–64 (2,8)–(1,4)–(0,2)–64
Conv2 (2,8)–(1,4)–(0,2)–128 (1,8)–(1,4)–(0,2)–128
Conv3 (1,4)–(1,2)–(0,1)–64 (1,4)–(1,2)–(0,1)–64
Reshape (64,1,4)→ (256,1,1) (64,1,4)→ (256,1,1)

Hidden Blocks are shown with red rectangles in Fig. 1.
Hidden blocks are designed with the main consideration that
the enhancement of the mixture will benefit from the estima-
tion of clean sources, and vice versa. Using a conditioning
method similar to [17], ul

t, v
l
t and wl

t can be considered as
outputs given conditions vl−1

∗ , {ul−1
∗ ,wl−1

∗ } and vl−1
∗ re-

spectively, i.e.,

ul
t = f(ul−1

t ,ul−1
t−dl |vl−1

t ,vl−1
t−dl) (5)

wl
t = f(wl−1

t ,wl−1
t−dl |vl−1

t ,vl−1
t−dl) (6)

vl
t = g(vl−1

t ,vl−1
t−dl |ul−1

t ,ul−1
t−dl ,w

l−1
t ,wl−1

t−dl) (7)

where dl is the temporal dilation factor for hidden block l. As
long as L and dl of all hidden blocks are known, receptive
field length can be determined by P = Σdl + 2.

Output Block. As shown with a green rectangle in Fig.
1, outputs x̂1,t and x̂2,t are derived from {uL

t , vL
t } and {wL

t ,
vL
t } of the last hidden blockL respectively using a multi layer

perceptron structure equipped with a PReLU and a tanh ac-
tivation, which consists of a 512-unit hidden layer and a 129-
dimension output layer.

It is worth mentioning that, with respect to sources x1

and x2, network parameters are all shared, and the structure
is completely symmetric. This characteristic conforms to the
common sense that all positions of each source are equivalent
and exchangeable. Moreover, this design avoids model size
growth when source number increases.

3.2. Multi-time-step Prediction Training

Using a conventional training method such as [17], a mis-
match problem would arise between training and inference
stages. During training, source inputs x̃k,<t in Eqn.(4) are
clean spectra xk,<t, whereas in the inference stage, they
change to estimated spectra x̂k,<t. The error between the two
spectra leads to a mismatch, especially prevalent when both
sources show similar patterns (e.g., energy, onset time and
pitch trajectory).

To alleviate this problem, we adopt a Multi-time-step Pre-
diction Training (MPT) strategy. At the first time step t′ = t,
source inputs are all clean spectra. Then at each time step
t′, outputs x̂k,t′ are fed back as inputs x̃k,t′ to replace orig-
inal clean spectra xk,t′ for the next time step t′ + 1. This
procedure repeats S times recursively, generating a sequence
of estimated source spectra x̂k,t′ , t′ = t, . . . , t + S − 1.
Finally, network parameters are optimized to minimize the
averaged MSE between targets and corresponding estimated
source spectra across all time steps:

L =
1

FS

S−1∑
s=0

K∑
k=1

‖xk,t+s − x̂k,t+s‖22 (8)

where S, K and F are step number, source number and fre-
quency bin number respectively (in this paper K=2, F=129),
‖ · ‖2 is the L2 norm.

4. EXPERIMENTS

4.1. Experimental Setup

We evaluated our network on the WSJ0-2mix dataset, which
was also used in [12, 14, 8]. WSJ0-2mix was introduced
in [12] and is derived from the WSJ0 corpus [20]. A 30-
hour training set and a 10-hour validation set contained two-
speaker mixtures generated by utterances randomly selected
from the WSJ0 training set si tr s, which were mixed at
various Signal-to-Noise Ratios (SNR) between 0 dB and 10
dB. A 5-hour test set was similarly generated using utter-
ances from 16 unseen speakers in the WSJ0 development set
si dt 05 and evaluation set si et 05. The validation set
and the test set were used to evaluate separation performance
for closed condition (CC) and open condition (OC) respec-
tively.

The network G evaluated had 10 hidden blocks with di-
lation factors [d2, . . . , d11]=[1, 2, 4, 8, 16, 1, 2, 4, 8, 16] and
dimensions of u, v, w were set to 256. As a result, G had
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approximately 7.2 million parameters, and from Section 3.1,
we can see that P=64.

To accelerate training with MPT described in Section 3.2,
a strategy was employed following curriculum learning [21]:
The training starts from small S in Eqn. (8), when validation
loss converges, S increases to a larger value. In the experi-
ments, this procedure repeats several times with S increasing
in the order of 1, 5, 10, 30, 60, 90 and 120, where S=1 is
equivalent to conventional training method. The network was
optimized using the Adam algorithm [22] with learning rate
0.001 for S=1, 0.0002 for S=5, and 0.0001 for other S set-
tings. Meanwhile, dropout (p=0.2) was only applied in the
input block when S < 60.

Considering G is completely symmetric with respect to
two sources x1 and x2, during inference, source inputs x̃1,<t

and x̃2,<t cannot all be initialized to silent spectra, otherwise
two outputs x̂1 and x̂2 will always be the same. Instead, in
the experiments x̃1,<t are initialized to P − 5 = 59 frames of
silent spectra plus 5 frames of mixture spectra y, while x̃1,<t

are all initialized to P frames of silent spectra.
All experiments were implemented using MXNet [23],

with the separated waveform reconstructed from the esti-
mated sources’ magnitude spectra, using phase from the
original mixed speech.

4.2. Experimental Results

Separation performance was evaluated in terms of averaged
Signal-to-Distortion Ratio (SDR) [24] improvement between
separated speech and mixture.

Evaluation of Multi-time-step Prediction Training. We
evaluate MPT with different step number S for CC and OC
conditions respectively. The results are shown in Table 2.

We can see that conventional training methods (S=1) per-
formed poorly, suggesting a large mismatch between training
and inference. However, with MPT (S > 1), SDR was sig-
nificantly improved, e.g., 6.9 dB in OC when S = 5. More-
over, the best result (9.5 dB in OC) can be observed at S=60,
which indicates that an appropriate ratio of clean and esti-
mated source inputs may be essential for training. Finally,
comparable or higher SDRs for OC compared to CC indicate
that our network generalized well for unseen speakers.

Comparison with other methods. Table 3 summarizes
SDR improvements and approximate model size (in terms of
parameter number) for different methods with similar or com-
parable experimental settings. It is worth noting that all deep
learning based models needed future mixture as input during
inference, except for the last three models. We can see that
the proposed network achieved comparable or higher SDR
than DPCL, DANet and PIT models in OC and CC conditions
with competitive model size.

In [8, 15], there are significant performance gaps between
BLSTM and LSTM. For example, in [15], DANet-6 anchor
achieved 10.4 dB SDR, higher than DANet-6 anchor-LSTM

Table 2. Closed-condition (CC) and open-condition (OC)
SDR improvements (dB) for different step numbers S in
MPT. S=1 denotes conventional training method.

S
SDR Improvement
CC OC

1 -3.0 -2.4
5 6.7 6.9
10 7.1 7.4
30 8.8 9.0
60 9.3 9.5
90 9.2 9.2
120 9.0 9.0

Table 3. SDR improvements (dB) and approximate model
sizes (in terms of parameter number estimated according to
the papers) of different methods for the same scenarios.

Method Model Size SDR Imp.
(million) CC OC

Oracle NMF [12] – 5.1 –
CASA [12] – 2.9 3.1

DPCL [12] 6.3 6.5 6.5
DPCL+ [13] 10.6 – 9.4
PIT-CNN-51\51 [8] – 7.6 7.5
uPIT-BLSTM-AM [8] 46.4 9.0 8.7
uPIT-BLSTM-PSM [8] 46.4 9.4 9.4

DANet-6 anchor-LSTM [15] – – 9.0
uPIT-LSTM-PSM [8] 65.7 7.0 7.0
Source-aware context network 7.2 9.3 9.5

(9.0 dB SDR). This is reasonable since BLSTM can exploit
future context information compared with LSTM. It is worth
noting that our proposed network can be easily modified to
incorporate future context as in BLSTM.

5. CONCLUSION

In this paper, we proposed a novel source-aware context
network and MPT strategy for single-channel multi-speaker
speech separation. The network is designed to address the
label permutation problem by exploiting temporal depen-
dencies and continuity of the same speech source. During
inference, no future mixture or post-processing is needed,
making it more practical for on-line systems. The MPT strat-
egy is further proposed to address the mismatch problem
between training and inference stages. Experimental results
on benchmark WSJ0-2mix revealed that, equipped with MPT
strategy, our network performed comparable or better than
state-of-the-art methods in both closed-set and open-set con-
ditions, in terms of SDR improvements.
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