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ABSTRACT

Pitch estimation is an important task in speech and audio analysis.
In this paper, we present a multi-pitch estimation algorithm based on
block sparse Bayesian learning and intra-block clustering for speech
analysis. A statistical hierarchical model is formulated based on a
pitch dictionary with a fixed maximum number of harmonics for all
the candidate pitches. Block sparse Bayesian learning is proposed
for estimating the complex amplitudes. To deal with the problem
of unknown harmonic orders and subharmonic errors, intra-block
clustering structured sparsity prior is also introduced. The statis-
tical update formulas are obtained by the variational Bayesian in-
ference. Compared with the conventional group LASSO-type algo-
rithms for multi-pitch estimation, experimental results indicate ro-
bustness against noise and improved estimation accuracy of the pro-
posed method.

Index Terms— Multi-pitch estimation, block sparse Bayesian
learning, clustering structured sparsity, subharmonic errors.

1. INTRODUCTION

Fundamental frequency (a.k.a., pitch) estimation has diverse appli-
cations in voice disorder detection [1], automatic music transcrip-
tion [2], speech enhancement [3], etc. The pitch estimation algo-
rithms can be broadly classified as non-parametric and parametric
methods. The popular Yin [4] and RAPT [5] can be categorized as
non-parametric methods since they are based on the autocorrelation
function obtained within a specified time frame. These methods are
computationally simple but they are sensitive to noise and prone to
subharmonic errors (that is, misidentifying a rational number times
the actual pitch). On the other hand, the pitch estimation methods
using parametric model (e.g., harmonic model) are less commonly
used but more robust to noise. In this model, both the pitch and
complex amplitudes are assumed to be invariant during a short-time
period (frame) (e.g., 20-40 ms for speech signals) [6]. Various kinds
of estimators, such as the nonlinear least square estimator [6], have
been proposed using the harmonic model or its variants.

When multiple speakers are present or multiple instruments are
mixed in a music piece, the problem of multi-pitch estimation arises.
In [7], different pitches were estimated by an iterative spectral sub-
traction process. That is, the estimated pitch from the most promi-
nent sound was removed from the mixture signal repeatedly. The
spectral smoothness principle was used to deal with the overlapping
harmonics. A statistical harmonic model-based multi-pitch estima-
tion algorithm was proposed in [8], where spectral smoothness was
also imposed by modelling the spectral envelope of overtones as an
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autoregressive model. More recently, a multi-pitch estimation algo-
rithm based on a pitch dictionary and group LASSO was proposed.
A convex cost function, combining the advantages of l2, sum of l2,
and l1 norms, was designed, which was referred to as PEBS [9]. A
total variation (TV) term was further introduced to reduce the sub-
harmonic errors (PEBS-TV). However, due to the difficulty of tun-
ing the regularization parameters, an adaptive penalty estimator with
self-regularization was proposed in [10], called PEBSI-Lite. The
dictionary in this algorithm was initialized with pitch candidates es-
timated by frequency estimation methods (e.g., ESPRIT [11]). An
iterative solution was obtained by the alternating direction method
of multipliers (ADMM) [12]. Typically, these methods incorporate
prior knowledge about the spectral smoothness, which can be ex-
ploited by the regularization techniques, or by the Bayesian frame-
work with prior models on the unknown complex amplitude param-
eters.

In this paper, motivated by the work in Bayesian sparse signal re-
covery [13–15], a block sparse Bayesian learning-based multi-pitch
estimation algorithm is proposed. By imposing the block sparse
prior, the complex amplitudes of the active pitches in the dictionary
can be recovered and thus also the corresponding pitches using block
sparse Bayesian learning (BSBL) method. Moreover, to deal with an
unknown number of harmonic orders and the subharmonic problem,
intra-block cluster structured sparsity prior is introduced. By clus-
tering the non-zero elements of the complex amplitudes within each
block, the subharmonic errors can be reduced. Variational Bayesian
inference is applied for obtaining statistical update formulas.

2. FUNDAMENTALS

We aim to fit the observed speech signals to an over-complete har-
monic model with harmonic series including P candidate pitches
and each pitch have up to Lmax harmonics, i.e.,

yn =

P∑
p=1

Lmax∑
l=1

ap,le
jωpln +mn, (1)

where ap,l denotes the complex amplitude of the lth harmonic of the
pth pitch in the dictionary, n is the time index, mn is the complex
Gaussian white noise, ωp = 2πfp/Fs, fp denotes the pth pitch, and
Fs is the sampling rate. Collecting N observed samples and writing
(1) to a matrix form, we have

y = Za + m, (2)

where y = [y0, y1, · · · , yN−1]T , the noise vector is given by
m = [m0,m1, · · · ,mN−1]T , the complex amplitude vector by
a =

[
aT
1 ,a

T
2 , · · · ,aT

P

]T
, ap = [ap,1, ap,2, · · · , ap,Lmax ]T , 1 ≤
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p ≤ P , the dictionary Z is a N × PLmax matrix denoted as
Z = [Z(ω1),Z(ω2), · · · ,Z(ωP )] and Z(ωp), for 1 ≤ p ≤ P , has a
Vandermonde structure as follows:

Z(ωp) =


1 1 · · · 1

ejωp ej2ωp
... ejLmaxωp

...
...

...
...

ejωp(N−1) ej2ωp(N−1) · · · ejLmaxωp(N−1)

 .
A key assumption in the over-complete harmonic model (2) is that
the complex amplitude vector a is block sparse. However, when the
actual number of harmonics of the pth pitch candidate is less than
Lmax, ap also contains zeros. The sum of norms and L1-norm regu-
larization terms are introduced in [9] to impose both the block sparse
and sparse priors for multi-pitch estimation. However, only using
these two regularization terms may lead to subharmonic errors. For
example, if the true pitch of an observed sinusoidal signal is 100 Hz
and we have 50 Hz pitch in the dictionary, we may wrongly estimate
the pitch as 50 Hz. This is because the observed signal can be fitted
well with a block sparse complex amplitude vector estimate â (e.g.,
â = [· · · ,0, âp,0, · · · ]T ) and a sparse sub-block estimate âp that
corresponds to the 50 Hz pitch (e.g., âp = [0, a1, 0, a2, 0 · · · ]T ). To
counter this problem, a total variation term is further added to the
cost function to impose smoothness to the complex amplitudes.

3. PROPOSED BLOCK SPARSE BAYESIAN LEARNING
AND INTRA-BLOCK CLUSTERING

As noted before, when subharmonic errors occur, the complex am-
plitude vector estimates of the subharmonics contain zeros. Instead
of using the sparse and smoothness priors like the PEBS-TV, an al-
ternative approach is to identify the complex amplitudes as cluster
structured sparsity around the first several elements and up to the
actual number of harmonics, which can be easily verified from the
spectrogram of speech signals. In this paper, we impose both the
block sparse prior and intra-block clustered structured sparse prior
to the first several elements of each ap for multipitch estimation.
Block sparse prior is applied for estimating the complex amplitudes
of the active pitches in the dictionary. Intra-block clustered struc-
tured sparse prior is exploited to counter the problem of unknown
harmonic orders and subharmonic errors. In this section, we first
formulate the problem using the hierarchical model and then give
the update formulas using the variational Bayesian inference.

3.1. Hierarchical Model

We proceed by assigning a circular, symmetric white complex Gaus-
sian to the observed noises, i.e.,

p(m|γ) = CN (m|0, γ−1IN ), (3)

where a complex Gaussian variable x with mean µ and covariance
Σ is defined as

CN (x|µ,Σ) =
1

πN |Σ| exp{−(x− µ)HΣ−1(x− µ)}. (4)

A Gamma distribution is assigned to the precision γ of the complex
Gaussian (conjugate prior), i.e.,

p(γ) ∼ Γ(γ|c, d). (5)

To motivate block sparsity and intra-block clustered sparsity for the
complex amplitude vector a, we first introduce a latent variable θp,l

(the lth element of the pth block of θ) to indicate the zero/nonzero
status of the corresponding complex amplitude coefficients ap,l, i.e.
a = u� θ, where � denotes element-wise multiplication and

p(u|α) = CN (u|0,Λ−1),

Λ = diag(α)⊗ ILmax . (6)

The hyperparameter αp (pth element of α) is the precision of the
pth block, and when it is infinite, the pth block will be zero [13]. A
Gamma distribution is also assigned to the hyperparameter αp as

p(αp) ∼ Γ(αp|g, h). (7)

Besides, the latent variable θp,l is drawn from Bernoulli distribution
with success probability πp,l, i.e.,

θp,l ∼ Bernoulli(πp,i). (8)

Three different patterns for clustered sparse recovery were intro-
duced in [16,17], i.e., P0: “strongly eliminate”, when the two neigh-
bours are both zeros; P1: “weakly eliminate”, when one of the
neighbour are zero; P2: “strongly plump”, when both of the neigh-
bours are non-zeros. However, in pitch estimation, non-zero clusters
are formed around the first several elements of ap of true pitches.
Therefore, we propose to use the following four-pattern model for
the latent variable θp,l, 1 ≤ p ≤ P, 1 < l < Lmax, i.e., P0: “strongly
elimination”, when θp,1 = 0 (fundamental frequency is missing);
P1: “mildly eliminate”, when the two neighbours are both zeros and
θp,1 = 1; P2: “weakly eliminate”, when one of the neighbour is zero
and θp,1 = 1; P3: “strongly plump”, when both of the neighbours
are non-zeros and θp,1 = 1. According to these clustering patterns,
the success probability for 1 < l < Lmax is chosen by

πp,l =


π0, if P0

π1, if P1

π2, if P2

π3, if P3

, πj ∼ Beta(πj |ej , f j), 0 ≤ j ≤ 3, (9)

where πj , for 0 ≤ j ≤ 3 is drawn from the Beta distribution. Note
that, the model for l ∈ {1, Lmax} are not shown here for simplicity.
However, we can follow the above definitions but use two patterns
for l = 1 and three patterns for l = Lmax because of their single
neighbour characteristic. Using patterns P1, P2 and P3, we can
expect that the non-zero elements within each block will be clustered
together. Moreover, an all-zero cluster will be formed in the rear
of the block since a large Lmax is used. By introducing the pattern
P0, a nonzero cluster around the first several elements of complex
amplitude vector ap is encouraged if the pth pitch in the dictionary
is active. We refer to the proposed algorithm as pitch estimation
using block sparse Bayesian learning and intra-block clustering (PE-
BSBL-Cluster). Note that if we set the latent variable θp,l = 1, 1 ≤
p ≤ P, l ≤ l ≤ Lmax, the intra-block clustering scheme will be
dropped and only block sparse prior will be applied, which we refer
to as PE-BSBL.

3.2. Variational Bayesian Inference

The exact joint posterior distribution can not be derived analyti-
cally. Instead, we resort to an approximation method, i.e., varia-
tional Bayesian inference [18]. For completeness, we give the up-
date formulas in section 6. A detailed derivation and the results for
l ∈ {1, Lmax} is given in the technical report [19].
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Fig. 1: Gross error ratio for synthetic signal in different SNRs, Q=2,
f0
1 = 160 and f0

2 = 240 Hz (240 = 3
2
× 160) .

4. RESULTS

We test the proposed PE-BSBL and PE-BSBL-Cluster in both syn-
thetic and mixed speech signals scenarios 1. All the modeling pa-
rameters are fixed as follows: c = d = h = 10−6, g = 1,
(e0, f0) = (1, 106), (e1, f1) = (1/Lmax, 1 − 1/Lmax), (e2, f2) =
(1/Lmax, 1/Lmax), (e3, f3) = (1− 1/Lmax, 1/Lmax). The proposed
algorithms are terminated if ‖α

i−αi−1‖2
‖αi‖2

≤ 10−3 or 1000 iterations
are reached, where i denotes the iteration number. Pitch estimates
are obtained by choosing the pitches that have the largest posterior
energies defined as µ̃H

p µ̃p + Tr(Σ̃p), where µ̃p and Σ̃p denote the
posterior mean and covariance of ap, and Tr(·) is the trace opera-
tor. We compare the proposed algorithms with the PEBS [9], PEBS-
TV [9] and PEBS-Lite [10]. For the PEBS and PEBS-TV, the regu-
larization parameters are set to the same as in [10].

4.1. Synthetic Signal Analysis

The first experiment examines the performance for synthetic signals
sampling of 8000 Hz, as shown in Fig. 1. Two pitches with 160 and
240 Hz are used. The data length N is set to 240. Uniform grid
ranging from 50 to 500 Hz with grid interval 2 Hz and Lmax = 10 is
used for all the experiments. To simulate the off-grid effect, for each
trial, the true pitches are drawn from the uniform distribution, i.e.,
f0,q ∼ Unif(f0

q −d/2, f0
q +d/2), 1 ≤ q ≤ Q. The deviation d is the

grid interval and f0
q denotes a pitch on the grid. The number of har-

monics are uniformly drawn over the integer interval [3, 10] in each
simulation. The amplitude of each harmonic is set to unit magnitude
and the phase is drawn uniformly on [0, 2π) [10]. The performance
is measured by the gross error rate (GER), defined by calculating
the number of pitch estimates that is differed by more than a certain
percentage from the ground truth [20, 21]. In this paper, we use 5%
for all the experiments. The experimental results are obtained by the
ensemble averages over 200 Monte Carlo simulations. As can be

1An implementation of the proposed algorithms using MATLAB may be
found in https://tinyurl.com/y8orkosc
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Fig. 2: Pitch estimates of real mixed speech of the spoken sentences
“Why were you away a year?” from a female and “Our lawyer will
allow your rule.” from a male speaker, Fs = 8000 Hz, SNR=5 dB.

seen, the GERs of the PEBS, PEBS-TV and PEBSI-Lite, are lower
than the PE-BSBL, especially in high SNRs. This is because that the
PE-BSBL only exploits the block sparse prior, and thus it is prone
to subharmonic errors. Moreover, the PEBS-TV presents a better
performance than the PEBS due to the TV term in the cost func-
tion. Furthermore, PEBSI-Lite obtains the lowest GER in high SNRs
due to the built-in refining process and good performance of the ES-
PRIT in high SNRs. But its performance degenerates severely in
low SNRs. By exploiting the block sparse and intra-block clustering
structured priors together, the proposed PE-BSBL-Cluster achieves
the lowest GER compared with PEBS, PEBS-TV and PE-BSBL in 0
to 25 dB SNRs. Although the PEBSI-Lite presents a slightly better
performance than the proposed PE-BSBL-Cluster in high SNRs (10
to 25 dB), the proposed PE-BSBL-Cluster has a much lower GER in
low SNRs (-5 to 5 dB). Thus, it is more robust to noise. Note that,
high-resolution estimates for the proposed algorithm can be found
by refining methods, such as gradient ascend method [6].

4.2. Mixed Speech Signal Analysis

We also examine the performance of the PE-BSBL and PE-SBL-
Cluster for a mixed speech signal of the spoken sentences “Why
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Fig. 3: Gross error ratio for real mixed speech in different SNRs.

were you away a year?” from a female speaker and “Our lawyer
will allow your rule.” from a male speaker. The ground truth pitch
estimates of each sentence are obtained by Yin in noise-free sce-
nario. The sampling rate is 8000 Hz. The spectrogram of mixed
speech (noise-free), pitch estimates of PEBSI-Lite and the proposed
PE-BSBL-Cluster under 5 dB SNR are shown in Fig. 2. On the
spectrogram, the two black dotted lines (from top to bottom) denote
the ground truth pitch estimates of the female and male sentences,
respectively. The GER versus different SNRs, computed using 10
Monte-Carlo simulations, is shown in Fig. 3. Analysis is performed
every 30 ms with 50% overlap. As can be seen from Fig. 2, the pro-
posed PE-BSBL-Cluster has less estimation errors than the PEBSI-
Lite. From the plots of both algorithms, the estimated pitch tracks of
the male speaker can be clearly seen. However, it is easier to see the
the estimated pitch track of the female speaker using the proposed
PE-BSBL-Cluster than PEBSI-Lite. Similar conclusions to Fig. 1
can be drawn from Fig. 3. The proposed PE-BSBL-Cluster achieves
the lowest GER in low SNRs (-5 to 10 dB) and has a comparable
performance with the PEBSI-Lite in high SNRs (15-25 dB). Above
all, due to the usage of the block sparse and clustering structured
priors, compared with group-LASSO type algorithms, the proposed
PE-BSBL-Cluster can deal with the problems of unknown harmonic
orders and subharmonic errors, and presents a good performance
even in low SNRs.

5. CONCLUSION

A multi-pitch estimation algorithm using block sparse Bayesian
learning and intra-block clustering has been proposed. Using a block
sparse prior model, the complex amplitude vectors corresponding
to the true pitches in the pitch dictionary can be recovered. More-
over, to deal with unknown number of harmonic orders and subhar-
monic errors, intra-block clustering structured sparsity are encour-
aged by imposing a clustering prior. Update equations are obtained
by the variational Bayesian inference. Simulation results using both
synthetic and real mixed speech show that the proposed PE-BSBL-
Cluster has improved multipitch estimation accuracy in terms of
GER and robustness against noise.

6. APPENDIX

The approximated posteriors are listed as follows:
(1) the indicator variable θp,l, 1 ≤ p ≤ P, 1 ≤ l ≤ Lmax:

q(θp,l) = Bernoulli(π̃p,l), (10)

where

π̃p,l

=[1 + exp{〈log(1− πp,l)〉 − 〈log(πp,l)〉+ 〈γ〉[〈u∗p,lup,l〉zH
p,lzp,l

− 2Re(〈up,l〉∗zH
p,l(y −

∑
(i,j)6=(p,l)

〈θi,j〉〈ui,j〉zi,j)]}]−1,

where 〈·〉 denotes the expectation operator, (·)∗ denotes the conju-
gate and (·)H denotes conjugate transpose.
(2) the complex amplitude u:

q(u) = CN (µ̃, Σ̃), (11)

where

Σ̃ = (〈Λ〉+ 〈γ〉〈diag(θ)ZHZdiag(θ)〉)−1,

µ̃ = 〈γ〉Σ̃〈diag(θ)〉ZHy,

and 〈diag(θ)ZHZdiag(θ)〉 = (ZHZ) � (〈θ〉〈θ〉T + diag(〈θ〉 �
(1− 〈θ〉))).
(3) the noise precision γ:

q(γ) = Γ(γ|c̃, d̃), (12)

where

c̃ =c+N,

d̃ =d+ ‖y − Z(〈u〉 � 〈θ〉)‖2 + Tr{ZHZ(〈uuH〉 � (〈θθT 〉)

− (〈u〉 � 〈θ〉)(〈u〉 � 〈θ〉)H)}.

(4) the precision αp, 1 ≤ p ≤ P of the complex amplitudes:

q(αp) = Γ(αp|g̃p, h̃p), (13)

where

g̃p = g + Lmax, h̃p = h+ 〈uH
p up〉.

(5) the success probability πp,l, 1 ≤ p ≤ P, 1 < l < Lmax:

q(πj
p,l) = Beta(πj

p,l|ẽ
j
p,l, f̃

j
p,l), (14)

where for j ∈ {0, 1, 2, 3},

ẽjp,l =ej + p(Pj)〈θp,l〉,

f̃ j
p,l =f j + p(Pj)(1− 〈θp,l〉),

and

p(P0) =1− 〈θp,1〉,
p(P1) =〈θp,1〉(1− 〈θp,l−1〉)(1− 〈θp,l+1〉),
p(P2) =〈θp,1〉(〈θp,l−1〉(1− 〈θp,l+1〉) + 〈θp,l+1〉(1− 〈θp,l−1〉)),
p(P3) =〈θp,1〉〈θp,l−1〉〈θp,l+1〉.

The Expectation of logarithm function can be calculated as

〈log πp,l〉 =

3∑
j=0

p(Pj)〈log πj
p,l〉,

〈log(1− πp,l)〉 =

3∑
j=0

p(Pj)〈log(1− πj
p,l)〉.
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