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ABSTRACT

A priori signal-to-noise ratio (SNR) contains critical information
about the single-channel mixture of a speech and noise signal, and
can be used by speech enhancement algorithms. In this paper, we
propose a novel a priori SNR estimator using the estimates obtained
from discriminative non-negative matrix factorization (DNMF). The
idea of our new approach is to utilize the DNMF to perform the
preliminary speech components estimation, which can be either di-
rectly used to estimate the a priori SNR, or can be combined with
the well-known decision-directed (DD) approach by Ephraim and
Malah to perform the a priori SNR estimation. We present a speaker-
independent but noise-dependent DNMF-based a priori SNR esti-
mator. Speech enhancement simulation results in the presence of
non-stationary noise validate our new approach combined with well-
known spectral weighting rules, outperforming several NMF-based
and non-NMF-based state-of-the-art methods, w.r.t. both SNR im-
provement and speech perceptual quality.

Index Terms— A priori SNR, discriminative non-negative ma-
trix factorization, speech enhancement

1. INTRODUCTION

A priori SNR estimation is an important topic in speech enhance-
ment. The estimation task can be very challenging when only a
single-channel mixture signal is available. A priori SNR estimation
methods for single-channel mixtures have been investigated in sev-
eral publications [1, 2, 3, 4, 5]. A reliable and precise a priori SNR
estimation is a crucial part in obtaining the spectral weighting rules
for speech enhancement algorithms [2, 6, 7]. The decision-directed
(DD) method by Ephraim and Malah [1] is a widespread a priori
SNR estimation approach performing the weighted summation of
two components. The first component is the estimated a priori SNR
obtained from the previous frame’s estimated speech signal power
and the noise power. The second component is related to the current
frame’s a posteriori SNR.

Non-negative matrix factorization (NMF) and its variant sparse
non-negative matrix factorization (SNMF) are popular algorithms
used in single-channel speech source separation, such as speech en-
hancement in the scenario of a speech signal being mixed with non-
stationary noise [8, 9]. The basic idea of NMF and SNMF is to repre-
sent the non-negative features of every speech source as a product of
a codebook matrix for each source and its corresponding weighting
matrix. Nevertheless, there are always overlaps of the codebooks be-
tween different speech sources which cannot be avoided in general.
Then, the codebook’s matrices for each source are not discrimina-
tive enough to distinguish the elements in the mixed signal. This
will degrade the performance of speech enhancement when using
conventional NMF or even SNMF.

Discriminative non-negative matrix factorization (DNMF) is a
modified SNMF algorithm that is designed to reduce the overlaps
between the different sources’ codebooks turning out to have better
performance than NMF [10, 11]. In the DNMF algorithm proposed
in [11], the codebooks for different sources are jointly trained in-
stead of the separate training in NMF.

An algorithm that is using conventional NMF combined with the
DD approach to perform the a priori SNR estimation and followed
by a linear MMSE filter for speech enhancement has been proposed
in [12], but still exhibiting and suffering from the issue of too similar
codebooks.

In this paper, we propose a new approach that uses DNMF to
perform a priori SNR estimation, since DNMF performs better than
the conventional NMF. We obtain the a priori SNR directly from
the DNMF outputs, or combine the DNMF outputs with the DD ap-
proach. The estimated a priori SNR is evaluated with subsequent
well-known spectral weighting rules to perform the actual speech
enhancement, such as the well-known Wiener filter (WF) [6], the
MMSE log-spectral amplitude estimator (LSA) [2], and the super-
Gaussian joint maximum a posteriori estimator (SG) [7].

The paper is organized as follows: Section 2 gives a short re-
view of the NMF, SNMF, and DNMF approaches. Section 3 presents
our DNMF-based a priori SNR estimation methods and the spectral
weighting rules to perform the speech enhancement. Simulation and
evaluation results are given in Section 4. We conclude this paper in
Section 5.

2. BASICS OF DISCRIMINATIVE NON-NEGATIVE
MATRIX FACTORIZATION

We assume y�n� to be the observed single-channel mixture of the
clean speech signal s�n�, and the superimposed noise signal d�n�
with n being the discrete-time sample index. In this paper, NMF is
used in the discrete Fourier transform (DFT) domain. Therefore, let
Y �`, k�, S�`, k�, and D�`, k� be the respective DFTs, with frame
index ` > L � �1,2, . . . , L� and frequency bin index k > K ��0,1, . . . ,K�1� with DFT size K. Due to the linearity of the DFT,
we have

Y �`, k� � S�`, k� �D�`, k�. (1)

As most NMF approaches, we assume that the mixture, the clean
speech, and the added noise signal’s DFT coefficients have the same
phase angles for each frame, so that

SY �`, k�S � SS�`, k�S � SD�`, k�S . (2)

Then, we can rewrite the magnitude spectrograms into matrices with
dimension K �L as:

Y � S �D. (3)

The unknown magnitude spectrograms S and D are estimated from
Y by using any of the subsequent NMF variants.
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2.1. NMF and SNMF

Non-negative matrix factorization is a method to approximate any
non-negative matrix X by the product of two non-negative matrices,
the K �Nc codebook matrix B and the Nc �L weighting matrix G
according to

X � BG, (4)

with Nc being the codebook size. The codebook B and the weight-
ing matrix G can be obtained by minimizing a cost function as:

min
B,G

C �X,BG� . (5)

In this paper, we investigate different cost functions such as the
well-known Kullback-Leibler (KL) divergence CKL [9] and the least
squares (LS) CLS [13]. The solution for (5) using the KL diver-
gence can be obtained by multiplicative update rules introduced in
[8], while the LS solution can be taken from [13].

In conventional NMF, one often gets a sparse solution for the
weighting matrix G, which means that only a subset of the Nc

column vectors in B is used to represent the non-negative matrix
X [10]. To further nourish the sparseness of the solution, sparse
non-negative matrix factorization (SNMF) has been proposed [14].
SNMF enforces the sparsity by adding an L1 norm of the weighting
matrix (called ÇG here), weighted by µ as a sparseness constraint to
(5), and µ is selected from [14]. For SNMF, only the KL divergence
is considered in this paper:

min
ÇB,ÇG

�CKL �X, ÇBÇG� � µ ZÇGZ
1
� . (6)

ÇB is the codebook matrix with normalized column vectors b̃j �

� b1,j

ZbjZ1
�

bK,j

ZbjZ1
�T , and ÇG is the corresponding sparse solution.

In the SNMF training stage, we use the multiplicative update rules
introduced in [10, 15] to obtain ÇB and ÇG for the speech and noise
magnitude spectrograms separately as:

Strain
�
ÇBtrain

s
ÇGtrain

s (7)

and Dtrain
�
ÇBtrain

d
ÇGtrain

d . (8)

In the SNMF separation stage, the observed magnitude spectrogram
Ytest is decomposed by fixing the concatenated source codebooks
and only using the update rule to obtain the weighting matrix:

Ytest
� �ÇBtrain

s
ÇBtrain

d � � ÇGmixture

� �ÇBtrain
s

ÇBtrain
d � � �ÇGT

s
ÇGT

d �T , (9)

with ÇGs and ÇGd being the submatrices of ÇGmixture. The preliminary
estimates for the speech and the noise magnitude spectrograms are
calculated by:

S̆ �
ÇBtrain

s
ÇGs (10)

and D̆ �
ÇBtrain

d
ÇGd. (11)

The final magnitude spectrogram estimates are typically calculated
by Wiener filtering:

S̄ �
ÇHbYtest (12)

D̄ � �I � ÇH�bYtest, (13)

with ÇH � �S̆b S̆�^ �S̆b S̆ � D̆b D̆� (14)

where the operators b and ^, are element-wise product and division,
respectively, and I being the K � Ltest matrix with all entries equal
to one.

2.2. Discriminative NMF

In the training stage of SNMF and NMF, the codebook matrices for
each source are trained independently as shown in (7) and (8). The
cost functions for (7) to (9) ensure the good recovery from the prod-
ucts of the codebooks and the corresponding weighting matrices but
do not guarantee the good estimation of each source in the separa-
tion stage. In most cases, there are some overlaps in the codebook
matrices for each source signal, so that the weighting matrix ÇGmixture

obtained in the separation stage does not provide perfect source sig-
nal seperation.

A new algorithm called discriminative NMF (DNMF) was pro-
posed to decrease the overlaps of the codebooks between different
sources by considering the separation stage in the training stage [11].
The new cost function to obtain the discriminative codebooks B̂s and
B̂d �� B̂train

s , B̂train
d � is:

min
B̂s,B̂d

C �Strain, ÇHbYtrain� , (15)

where ÇH is then from the SNMF separation stage (9) to (14), but
with Ytrain

� Strain
�Dtrain instead of Ytest in (9). Thus, the DNMF

training is based on the SNMF training without requiring any addi-
tional information, which is called parallel training [11]. In (15), the
cost function can be either KL divergence or least squares. Then, we
can define the two types of DNMF as DNMF-KL and DNMF-LS,
respectively.

In the DNMF training stage, we fix the weighting matrices ob-
tained from parallel SNMF training and only optimize the code-
books by using the multiplicative update rules explained in [11]. The
DNMF separation stage is almost the same as the SNMF separation
stage when using (9) to (14), but utilizes the discriminative code-
books B̂train

s and B̂train
d instead of ÇBtrain

s and ÇBtrain
d in (10) and (11).

3. NEW DNMF-BASED A PRIORI SNR ESTIMATION
In this paper, we propose a new a priori SNR estimation method
based on the magnitude spectrograms estimated from DNMF. We
define the a priori SNR as:

ξ �`, k� � σ2
S �`, k�
σ2
D �`, k� , (16)

and the a posteriori SNR as:
γ �`, k� � SY �`, k�S2

σ2
D �`, k� , (17)

with the entities σ2
S �`, k� and σ2

D �`, k� being the speech and noise
signal powers, respectively, which are not available in reality. In-
stead, we obtain estimations from the magnitude spectrograms of
DNMF (12), (13), as

σ̂2
S �`, k� � S̄2

i�k,j�` (18)
σ̂2
D �`, k� � D̄2

i�k,j�`. (19)
In this work, we do not use the DNMF estimates to directly obtain
the desired clean speech spectrum. Instead, as in [16], we propose a
new a priori SNR estimator and then apply a spectral weighting rule
G �`, k� to the mixed signal by

Ŝ �`, k� � Y �`, k� �G �`, k� . (20)
Then, the estimated clean speech spectrum Ŝ �`, k� is transformed
to the time domain by IFFT with overlap add (OLA). For evaluation
in Section 4, we will use several well-known methods to calculate
spectral weighting rules, such as WF, LSA, and SG, as introduced
before. Most spectral weighting rules

G �`, k� � f�ξ �`, k� , γ �`, k�� (21)

are nonlinear functions of the a priori SNR and sometimes of the a
posteriori SNR. In the following, we investigate two different meth-
ods to estimate the a priori SNR, while the a posteriori SNR will be
estimated by simply using (19) in the denominator of (17).
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Fig. 1. The new DNMF-SN speech enhancement system

3.1. DNMF Used for Noise and Speech Power Estimation

As shown in Fig. 1, the speech and the noise power in (16) are di-
rectly calculated from the DNMF estimates by (18) and (19). Then,
the estimated a priori SNR ξ̂ �`, k� is obtained from (16). We refer
to this method as DNMF-SN.

The procedures with corresponding formulae are given in Fig. 1.
We will investigate both the KL divergence and least squares as a
cost function in (15) and refer to the two methods as DNMF-KL-
SN and DNMF-LS-SN, respectively.

3.2. DNMF Used Only for Noise Power Estimation

As shown in Fig. 2, only the noise signal power is estimated through
DNMF by (19). Instead of using (16), the a priori SNR estimate is
then obtained by an instantaneous DD estimator

ξ̂�`, k� � β TŜ �`�1, k�T2
σ̂2
D �`�1, k� � �1�β� �max�γ̂ �`, k��1, ξmin� , (22)

henceforth dubbed DNMF-N. The block “ T ” in Fig. 2 represents a
delay of one frame. The lower threshold ξmin is set to �14 dB for
WF and SG, and �15 dB for LSA. We also investigate the two dif-
ferent cost functions for the DNMF training and denote the methods
as DNMF-KL-N and DNMF-LS-N, respectively. The optimal pa-
rameters β for the three weighting rules have been reported in and
are taken from [17, p. 74].

4. SIMULATION RESULTS
4.1. Setup and Measures

The used speech data to assess our method is taken from the Grid
Corpus [18]. To perform the speaker-independent speech codebook
training as sometimes done in literature [10, 11], we randomly se-
lect 16 speakers, which contain 8 male and 8 female and use 32
sentences per speaker for SNMF and DNMF training. For the evalu-
ation, 4 different speakers are chosen, 2 male and 2 female, with 10
sentences each.

Two types of superimposed noise are used: Pedestrian noise
(PED) and café noise (CAFE), which are obtained from CHiME-
3 data [19]. To obtain the noise-dependent noise codebook as usual
in NMF and DNMF literature [8, 10, 11, 12], two different noise
codebooks are trained separately for two types of noise in the SNMF
and the DNMF training stage. The codebook sizes for speech and
noise are both set to Nc � 256. Each training set consists of dis-
torted speech signals at 7 different SNR levels ranging from �5 dB
to 25 dB with a step size of 5 dB. The SNR level is measured ac-
cording to ITU P.56 [20]. All the speech and noise signals have a
sampling rate of 16 kHz and are transformed to the DFT domain us-
ing an FFT with K � 256, using a periodic Hann window with 128
samples frame shift.

The evaluation set for each noise type consists of the unseen

Fig. 2. The new DNMF-N speech enhancement system

noise and the evaluation speech signals, with SNRs from �5 dB to
20 dB in 5 dB steps. The evaluations are based on the filtered clean
speech component s̃�n� and also the filtered noise component d̃�n�,
which is often called white-box approach [21]. Note that S̃ �`, k� �
G �`, k� �S �`, k� and D̃ �`, k� � G �`, k� �D �`, k� . We use the fol-
lowing measures [16]:
1) SNR improvement: ∆SNR � SNRout � SNRin, �dB�
with SNRin and SNRout being measured using ITU P.56 [20].
2) Speech component quality (PESQ MOS-LQO) is measured us-
ing s�n� as reference signal and the filtered clean speech component
s̃�n� as test signal according to [22, 23].
3) Segmental speech-to-speech-distortion ratio:

SSDR �

1

L1
Q
`>L1

SSDRframe�`� �dB�
with L1 ` L, denotes the set of speech active frames [24, 16], and

SSDRframe�`� � max�min�SSDR��`�,30 dB� ,�10 dB� ,
and

SSDR��`�� 10 log10

<@@@@@@>

P
n>N`

s2�n�
P

n>N`

�̃s�n �∆��s�n��2
=AAAAAA?
,

with N` denoting the sample indices n in frame `, and ∆ is used to
perform time alignment for the filtered signal s̃�n�.
4) Segmental noise attenuation:

NA � 10 log10 � 1

L
Q
`>L

NAframe�`�	 , �dB�
with NAframe�`� � Pn>N`

d2�n�
Pn>N`

d̃2�n �∆� .

4.2. Simulation Results

We report on PED noise and CAFE noise separately. In each type
of noise, the measures are averaged over all speakers and also SNR
levels, as shown in Tables 1 and 3. Additionally, Tables 2 and 4 show
results for an SNR of �5 dB separately. The baseline methods LSA,
SG, and WF are weighting rules using DD and minimum statistics
(MS) [25] for a priori SNR and noise power estimation, respectively.
DNMF-KL and DNMF-LS are pure DNMF baseline methods using
different cost functions KL and LS. In each column, the three best
results are printed in boldface, while the three worst results are
marked with a gray underlying color.

From the results in Tables 1 and 3 it becomes clear, that the
proposed DNMF-LS-N approach shows a more balanced behavior
compared to all five baseline approaches with respect to the four
measures. Every baseline obtains at least one (in most cases even
two) of the three worst scores among the four measures, while
DNMF-LS-N in those cases, independent of the noise type, per-
forms always better. Furthermore, DNMF-LS-N is among the
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Method ∆ SNR PESQ MOS SSDR NA
LSA 3.08 3.40 15.05 7.98

SG 2.73 3.37 15.33 8.77

WF 3.85 3.45 13.52 10.31

DNMF-KL 5.08 3.05 9.07 13.17

DNMF-LS 5.50 3.14 9.47 13.33

DNMF-KL-SN
LSA 4.69 3.62 13.45 11.02
SG 4.73 3.46 14.20 11.26

WF 4.83 3.52 13.25 11.39

DNMF-LS-SN
LSA 5.18 3.70 13.71 10.99
SG 5.20 3.52 14.36 11.24
WF 5.35 3.60 13.51 11.38

DNMF-KL-N
LSA 4.57 3.64 14.80 11.25
SG 4.85 3.42 15.20 11.76

WF 4.91 3.37 13.60 12.13

DNMF-LS-N
LSA 5.28 3.70 14.81 11.55
SG 5.53 3.48 15.15 12.06
WF 5.83 3.48 13.54 12.48

Table 1. Performance for pedestrian (PED) noise averaged over all
SNRs; except PESQ MOS all measures in [dB].

Method ∆ SNR PESQ MOS SSDR NA
LSA 2.22 2.54 5.86 8.37

SG 2.02 2.72 5.47 9.48

WF 2.41 2.87 4.42 11.19

DNMF-KL 4.19 2.01 2.92 15.00

DNMF-LS 4.56 2.16 3.04 15.13

DNMF-KL-SN
LSA 3.97 2.82 5.22 12.48

SG 4.20 2.54 5.32 12.76
WF 4.13 2.67 4.96 12.87

DNMF-LS-SN
LSA 4.72 3.00 5.24 12.41
SG 5.01 2.70 5.33 12.71
WF 4.90 2.85 4.97 12.82

DNMF-KL-N
LSA 4.30 2.80 5.55 12.98
SG 4.72 2.53 5.41 13.50
WF 4.28 2.59 4.48 13.87

DNMF-LS-N
LSA 5.61 3.02 5.48 13.24
SG 6.09 2.74 5.38 13.71

WF 6.11 2.88 4.34 14.11

Table 2. Performance for pedestrian (PED) noise at SNR � �5 dB;
except PESQ MOS all measures in [dB].

top-three in all four tables in all four measures at least in conjunc-
tion with one of the weighting rules. This indicates that the typical
trade-off between speech quality and noise attenuation could be
successfully reduced by the proposed approach. Furthermore, the
results are more independent of the chosen weighting rule compared
to the three baselines LSA, SG, and WF, which suggests that the
a priori SNR estimation is more precise. The remainder of the
proposed approaches show a similar performance, except for two
measures in each table which also indicates a less sensitive trade-off
for those new approaches.

Especially, in the low-SNR conditions shown in Tables 2 and
4, a strong improvement of the proposed versus the baseline ap-
proaches can be observed in the measures since the difference
between the worst scores, obtained by the baseline approaches and
the corresponding scores of the proposed approaches is much larger
compared to Tables 1 and 3. As the noise types are non-stationary,
the advantage might stem from the more instantaneous fashion of
estimating the noise power compared to the baselines LSA, SG,

Method ∆ SNR PESQ MOS SSDR NA
LSA 3.48 3.40 14.43 8.43

SG 3.29 3.38 14.65 9.23

WF 4.30 3.48 12.90 10.53

DNMF-KL 4.75 3.12 9.04 11.90

DNMF-LS 5.19 3.22 9.61 11.43

DNMF-KL-SN
LSA 4.43 3.73 13.78 10.36
SG 4.44 3.58 14.57 10.61
WF 4.57 3.64 13.58 10.76

DNMF-LS-SN
LSA 4.90 3.79 14.28 10.12
SG 4.87 3.63 14.97 10.39
WF 5.07 3.70 14.08 10.59

DNMF-KL-N
LSA 4.17 3.79 15.51 10.36
SG 4.44 3.56 15.93 11.03
WF 4.58 3.52 14.27 11.47

DNMF-LS-N
LSA 4.87 3.84 15.65 10.75
SG 5.14 3.62 16.03 11.45
WF 5.54 3.60 14.32 12.00

Table 3. Performance for cafe (CAFE) noise averaged over all
SNRs; except PESQ MOS all measures in [dB].

Method ∆ SNR PESQ MOS SSDR NA
LSA 2.84 2.60 5.55 9.32

SG 3.17 2.75 5.08 10.05

WF 3.14 2.99 4.19 11.50

DNMF-KL 4.28 2.08 2.96 13.92

DNMF-LS 4.46 2.26 3.18 13.01

DNMF-KL-SN
LSA 4.35 3.01 6.01 12.00
SG 4.51 2.77 6.16 12.32
WF 4.52 2.87 5.73 12.43

DNMF-LS-SN
LSA 4.78 3.20 6.14 11.49
SG 4.96 2.94 6.31 11.83
WF 5.00 3.06 5.85 11.98

DNMF-KL-N
LSA 4.34 3.04 6.80 12.21
SG 4.83 2.73 6.58 12.91
WF 4.64 2.73 5.50 13.29

DNMF-LS-N
LSA 5.40 3.30 6.73 12.38
SG 5.90 2.99 6.59 13.07
WF 6.28 3.02 5.31 13.60

Table 4. Performance for cafe (CAFE) noise at SNR � �5 dB;
except PESQ MOS all measures in [dB].

and WF. The consistent improvement in speech component quality
(PESQ MOS) of the four new methods compared to the baselines
DNMF-KL and DNMF-LS could be explained by the fact that
using the noise power estimate from the DNMF as input to the DD
a priori and a posteriori SNR estimation and subsequently in a
weighting rule is less prone to estimation errors.

5. CONCLUSIONS
In this paper, we have presented two types of DNMF-based a pri-
ori SNR estimator: DNMF-SN and DNMF-N. From our evalua-
tions, the DNMF-LS-N a priori SNR estimation approach offers
more balanced behavior compared to all baseline methods and is
more independent of the weighting rules by giving a more precise
a priori SNR estimation. In the low-SNR condition (SNR=�5 dB),
the DNMF-LS-N approach shows a 1 to 2 dB higher ∆ SNR with a
similar or better PESQ MOS than all the baseline methods.

664



6. REFERENCES

[1] Y. Ephraim and D. Malah, “Speech Enhancement Using a
Minimum Mean-Square Error Short-Time Spectral Amplitude
Estimator,” IEEE Transactions on Acoustics, Speech, and Sig-
nal Processing, vol. ASSP-32, no. 6, pp. 1109–1121, Dec.
1984.

[2] Y. Ephraim and D. Malah, “Speech Enhancement Using a
Minimum Mean-Square Error Log-Spectral Amplitude Esti-
mator,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. ASSP-33, no. 2, pp. 443–445, Apr. 1985.

[3] I. Cohen, “Speech Enhancement Using Super-Gaussian
Speech Models and Noncausal A Priori SNR Estimation,”
Speech Commun., vol. 47, no. 3, pp. 336–350, Nov. 2005.

[4] S. Suhadi, C. Last, and T. Fingscheidt, “A Data-Driven Ap-
proach to A Priori SNR Estimation,” IEEE Transactions on
Audio, Speech, and Language Processing, vol. 19, no. 1, pp.
186–195, Jan. 2011.

[5] S. Elshamy, N. Madhu, W. J. Tirry, and T. Fingscheidt, “An
Iterative Speech Model-Based A Priori SNR Estimator,” in
Proc. of Interspeech, Dresden, Germany, Sept. 2015, pp. 1740–
1744.

[6] P. Scalart and J. V. Filho, “Speech Enhancement Based on A
Priori Signal to Noise Estimation,” in Proc. of ICASSP, At-
lanta, GA, USA, May 1996, pp. 629–632.

[7] T. Lotter and P. Vary, “Speech Enhancement by MAP Spec-
tral Amplitude Estimation Using a Super-Gaussian Speech
Model,” EURASIP Journal on Applied Signal Processing, vol.
2005, no. 7, pp. 1110–1126, 2005.

[8] E. M. Grais and H. Erdogan, “Single Channel Speech Music
Separation Using Nonnegative Matrix Factorization and Spec-
tral Masks,” in Proc. of 17th International Conference on Dig-
ital Signal Processing, Corfu, Greece, Jul. 2011, pp. 1–6.

[9] K. Serap and S. Paris, “An Adaptive Time-frequency Reso-
lution Approach for Non-Negative Matrix Factorization Based
Single Channel Sound Source Separation,” in Proc. of ICASSP,
Prague, Czech Republic, Jul. 2011, pp. 253–256.

[10] Z. Wang and F. Sha, “Discriminative Non-Negative Matrix
Factorization for Single-Channel Speech Separation,” in Proc.
of ICASSP, Florence, Italy, Jul. 2014, pp. 3749–3753.

[11] F. Weninger, J. L. Roux, J. R. Hershey, and S. Watanabe, “Dis-
criminative NMF and its Application to Single-Channel Source
Separation,” in Proc. of Interspeech, Singapore, Singapore,
Sep. 2014, pp. 865–869.

[12] N. Mohammadiha, T. Gerkmann, and A. Leijon, “A New
Linear MMSE Filter for Single Channel Speech Enhancement
Based on Nonnegative Matrix Factorization,” in Proc. of WAS-
PAA, New Paltz, NY, USA, Nov. 2011, pp. 45–48.

[13] D. D. Lee and H. S. Seung, “Algorithms for Non-Negative
Matrix Factorization,” in Proc. of NIPS, Denver, CO, USA,
Jun. 2001, pp. 556–562.

[14] P.O. Hoyer, “Non-Negative Sparse Coding,” in Proc. of Work-
shop on Neural Networks for Signal Processing, Martigny,
Switzerland, Nov. 2002, pp. 557–565.

[15] T. T. Vu, B. Bigot, and E. S. Chng, “Combining Non-Negative
Matrix Factorization and Deep Neural Networks for Speech
Enhancement and Automatic Speech Recognition,” in Proc. of
ICASSP, Shanghai, China, May 2016, pp. 499–503.

[16] S. Elshamy, N. Madhu, W. Tirry, and T. Fingscheidt, “Instanta-
neous A Priori SNR Estimation by Cepstral Excitation Manip-
ulation,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 25, no. 8, pp. 1592–1605, Aug. 2017.

[17] H. Yu, Post-Filter Optimization for Multichannel Automotive
Speech Enhancement, Ph.D. thesis, Institute for Communica-
tions Technology, Technische Universität Braunschweig, Ger-
many, 2013.

[18] M. Cooke, J. Barker, S. Cunningham, and X. Shao, “An Audio-
Visual Corpus for Speech Perception and Automatic Speech
Recognition,” The Journal of the Acoustical Society of Amer-
ica, vol. 120, no. 5, pp. 2421–2424, Jun. 2006.

[19] J. Barker, R. Marxer, E. Vincent, and S. Watanabe, “The
Third ‘CHiME’ Speech Separation and Recognition Chal-
lenge: Dataset, Task and Baselines,” in Proc. of ASRU, Scotts-
dale, AZ, USA, Feb. 2015, pp. 504–511.

[20] International Telecommunication Union, Objective Measure-
ment of Active Speech Level, Telecommunication Standardiza-
tion Sector (ITU-T), Rec. P.56, Dec. 2011.

[21] S. Gustafsson, R. Martin, and P. Vary, “On the Optimization of
Speech Enhancement Systems Using Instrumental Measures,”
in Proc. of Workshop on Quality Assessment in Speech, Audio,
and Image Communication, Darmstadt, Germany, Mar. 1996,
pp. 36–40.

[22] International Telecommunication Union, Perceptual Evalua-
tion of Speech Quality (PESQ): An Objective Method for End-
To-End Speech Quality Assessment of Narrow-Band Telephone
Networks and Speech Codecs, Telecommunication Standard-
ization Sector (ITU-T), Rec. P.862, Feb. 2001.

[23] International Telecommunication Union, Wideband Hands-
Free Communication in Motor Vehicles, Telecommunication
Standardization Sector (ITU-T), Rec. P.1110, Jan. 2015.

[24] T. Fingscheidt, S. Suhadi, and S. Stan, “Environment-
Optimized Speech Enhancement,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 16, no. 4, pp. 825–
834, May 2008.

[25] R. Martin, “Noise Power Spectral Density Estimation Based
on Optimal Smoothing and Minimum Statistics,” IEEE Trans-
actions on Speech and Audio Processing, vol. 9, no. 5, pp. 504–
512, Jul. 2001.

665


