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ABSTRACT
In this paper, we present a single-channel smoothing-and-filtering
technique for noise reduction in the time domain. Unlike tradition-
al noise reduction methods, which directly apply a noise reduction
filter to the noisy signal, the developed technique achieves noise re-
duction in two steps. It first applies a time smoothing window to
the noisy signal, which, on the one hand, can help reduce high fre-
quency noise and, on the other hand, can help leverage the correla-
tion between successive signal samples. A noise reduction filter is
then applied to the smoothed noisy signal to estimate the speech sig-
nal of interest. Three optimal and suboptimal noise reduction filter-
s are derived, including the Wiener, maximum signal-to-noise-ratio
(SNR), and tradeoff filters. Simulation results reveal that the devel-
oped method can produce better noise reduction performance, i.e.,
higher gains in the perceptual-evaluation-of-speech-quality (PESQ)
score, than the traditional methods without smoothing.

Index Terms— Noise reduction, speech enhancement, single
channel, time-domain smoothing, optimal filtering.

1. SIGNAL MODEL AND PROBLEM FORMULATION
In the noise reduction problem considered in this paper, the noisy
observation or microphone signal is given by [1], [2]

y(k) = x(k) + v(k), (1)

where k is the discrete-time index, x(k) is the clean speech signal
(also called the desired signal), and v(k) is the unwanted additive
noise, which is assumed to be uncorrelated with x(k). All signals
are considered to be zero mean, real, and broadband.

By considering past and future time samples of the observations,
we can define an observation matrix of size L×N :

Y(k) = (2)
y(k) y(k + 1) · · · y(k +N − 1)

y(k − 1) y(k) · · · y(k +N − 2)
...

...
. . .

...
y(k − L+ 1) y(k − L+ 2) · · · y(k +N − L)

 .

This matrix will be used in the rest of this paper. We define the
matrices X(k) and V(k) in a similar way but with the clean and
noise signals, respectively.

Then, the objective of single-channel noise reduction in the time
domain is the estimation of the desired signal, x(k), from some of
the data contained in Y(k), in the best possible way. In the follow-
ing, we show how to combine smoothing and filtering to achieve this
goal.
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2. LINEAR FILTERING/SMOOTHING FOR NOISE
REDUCTION

In this section, we explain the linear estimation technique for the
derivation of single-channel noise reduction filters in the time do-
main that have the ability to smooth the observed signals at the same
time.

Multiplying the matrix Y(k) by a real-valued window, w, of
length N , we observe that each component of the vector Y(k)w is
smoothed along the time axis with future time samples. Then, the
estimator that we propose is

z(k) = hTY(k)w (3)

= hTX(k)w + hTV(k)w

= xfd(k) + vrn(k),

where z(k) is the estimate of x(k), h is a real-valued linear filter
of length L, the superscript T is the transpose operator, xfd(k) =
hTX(k)w is the filtered desired signal, and vrn(k) = hTV(k)w
is the residual noise. With this approach, the filtering is performed
with past time samples while smoothing is performed with future
time samples.

We deduce that the variance of z(k) is

σ2
z = E

[
z2(k)

]
(4)

= hTRYwh

= σ2
xfd

+ σ2
vrn ,

where E[·] denotes mathematical expectation, RYw =
E
[
Y(k)wwTYT (k)

]
is the correlation matrix of Y(k)w,

σ2
xfd

= hTRXwh is the variance of the filtered desired sig-
nal, with RXw being the correlation matrix of X(k)w, and
σ2
vrn = hTRVwh is the variance of the residual noise, with RVw

being the correlation matrix of V(k)w.

3. PERFORMANCE MEASURES
According to the signal model given in (1), we define the input SNR
as

iSNR =
σ2
x

σ2
v

, (5)

where σ2
x = E

[
x2(k)

]
and σ2

v = E
[
v2(k)

]
are the variances of

x(k) and v(k), respectively.
The output SNR quantifies the SNR after the filtering/smoothing

process. It is defined as

oSNR (h) =
σ2
xfd

σ2
vrn

=
hTRXwh

hTRVwh
. (6)

636978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



The filter, h, should be found in such a way that oSNR (h) > iSNR.
To quantify the amount of noise being rejected by the filter, we

define the noise reduction factor as [3, 4]

ξn (h) =
σ2
v

hTRVwh
. (7)

For optimal filters, we should have ξn (h) ≥ 1.
In practice, the filter adds distortion to the desired signal. In

order to evaluate the level of this distortion, we define the desired
signal reduction factor as [3, 4]

ξd (h) =
σ2
x

hTRXwh
. (8)

For optimal filters, we should have ξd (h) ≥ 1. The larger the value
of ξd (h), the more the desired signal is distorted.

By making the appropriate substitutions, one can derive the re-
lationship:

oSNR (h)

iSNR
=

ξn (h)

ξd (h)
. (9)

This expression indicates the equivalence between gain/loss in SNR
and distortion.

Another way to measure the distortion of the desired signal due
to the filter is the desired signal distortion index, which is defined
as the mean-squared error (MSE) between the desired signal and
the filtered desired signal, normalized by the variance of the desired
signal, i.e.,

υd (h) =
E
{[

x(k)− hTX(k)w
]2}

σ2
x

. (10)

The desired signal distortion index is usually upper bounded by 1 for
optimal filters.

4. MSE CRITERION
In the time domain, the error signal between the estimated and de-
sired signals is

e(k) = z(k)− x(k) = hTY(k)w − x(k), (11)

which can also be written as the sum of two uncorrelated error sig-
nals:

e(k) = ed(k) + en(k), (12)

where

ed(k) = hTX(k)w − x(k) (13)

is the distortion of the desired signal due to the filter and

en(k) = hTV(k)w (14)

represents the residual noise. The MSE criterion is then

J (h) = E
[
e2(k)

]
(15)

= σ2
x − 2hT rYwx + hTRYwh

= Jd (h) + Jn (h) ,

where rYwx = E [Y(k)wx(k)],

Jd (h) = E
[
e2d(k)

]
= υd (h)σ

2
x, (16)

and

Jn (h) = E
[
e2n(k)

]
=

σ2
v

ξn (h)
. (17)

We deduce that

Jd (h)

Jn (h)
= iSNR× ξn (h)× υd (h) (18)

= oSNR (h)× ξd (h)× υd (h) .

This shows how the different performance measures are related to
the MSEs.

5. OPTIMAL FILTERS
In this section, we derive a class of single-channel noise reduction
filters from the maximization of the output SNR and the minimiza-
tion of the MSEs.

The maximum SNR filter, hmax, is obtained by maximizing the
output SNR as defined in (6), from which we recognize the gen-
eralized Rayleigh quotient [5]. It is well known that this quotient
is maximized with the eigenvector corresponding to the maximum
eigenvalue of the matrix product R−1

VwRXw. Let us denote λmax

this maximum eigenvalue and tmax the corresponding eigenvector.
Then, it is clear that the maximum SNR filter is

hmax = ςtmax, (19)

where ς ̸= 0 is an arbitrary real-valued number. We also have

oSNR (hmax) = λmax ≥ iSNR (20)

and

oSNR (hmax) ≥ oSNR (h) , ∀h. (21)

One of the best ways to find the parameter ς is by minimizing
distortion. Substituting hmax into the distortion-based MSE, we get

Jd (hmax) = σ2
x − 2ςtTmaxrYwx + ς2tTmaxRXwtmax, (22)

from which we find the optimal value of ς:

ς =
tTmaxrYwx

tTmaxRXwtmax
. (23)

As a result, the maximum SNR filter with minimum distortion is

hmax =
tmaxt

T
maxrYwx

tTmaxRXwtmax
. (24)

The minimum distortion (MD) filter is obtained by minimizing
Jd (h). We get

hMD = R†
XwrYwx, (25)

where R†
Xw is the pseudo-inverse of RXw. If RXw is of full rank,

R†
Xw = R−1

Xw and hMD becomes

hMD = R−1
XwrYwx. (26)

The Wiener filter is obtained from the optimization of the MSE
criterion, J (h). The minimization of J (h) with respect to h leads
to

hW = R−1
YwrYwx. (27)
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We should have

oSNR (hW) ≥ oSNR (hMD) (28)

and

ξd (hW) ≥ ξd (hMD) . (29)

Another interesting approach that can compromise between
noise reduction and desired signal distortion is the tradeoff filter ob-
tained by

min
h

Jd (h) subject to Jn (h) = ℵσ2
v, (30)

where 0 ≤ ℵ ≤ 1, to ensure that filtering achieves some degree
of noise reduction. Assuming that the matrix RVw is of full rank,
which is generally true in practice, we find that the optimal filter is

hT,µ = (RXw + µRVw)−1 rYwx, (31)

where µ ≥ 0 is a Lagrange multiplier. Clearly, for µ = 0 and
µ = 1, we get the MD (if RXw is invertible) and Wiener filters,
respectively. For µ > 1 (resp. µ < 1), the tradeoff filter reduces
more (resp. less) noise and introduces more (resp. less) distortion to
the desired speech signal than the Wiener filter.

6. SIMULATIONS
In this section, simulations are carried out to evaluate the effective-
ness of the developed filtering/smoothing technique for noise re-
duction in the time domain. The output SNR defined in (6), the
speech distortion index defined in (10), and the perceptual evaluation
of speech quality (PESQ) score [6] are adopted as the performance
measures.

The clean speech signals (consisting of 20 sentences with 10
from a male speaker and the other 10 from a female speaker) are
taken from the TIMIT database [7]. In our simulations, we consider
noise reduction of narrow band signals, so all the signals are down-
sampled from the original sampling rate of 16 kHz to 8 kHz. To
obtain the noisy speech, noise recorded in a Sedan car running at
50 MPH on a highway is added to the clean speech, which is prop-
erly scaled to control the input SNR level.

In order to implement the filters derived in the previous section,
we need to know the correlation matrices of the noisy and noise sig-
nals. In this simulation, we compute these matrices directly from the
respective signals using a recursive method [8], i.e.,

R̂Yw(k) = αyR̂Yw(k − 1) + (1− αy)Y(k)wwTYT (k), (32)

and R̂Vw is computed the same way. Then, the correlation matrix of
the speech signal is computed as R̂Xw = R̂Yw−R̂Vw. For the es-
timation of rYwx, the two quantities rYwy and rVwv are estimated
first:

r̂Ywy(k) = αy r̂Ywy(k − 1) + (1− αy)Y(k)wy(k), (33)
r̂Vwv(k) = αv r̂Vwv(k − 1) + (1− αv)V(k)wv(k), (34)

where αy ∈ (0, 1) and αv ∈ (0, 1) are two forgetting factors, which
control the influence of the previous data samples on the curren-
t estimate (the initial estimate is obtained from the first 1600 sig-
nal samples with a long-time average). Then, we have r̂Ywx(k) =
r̂Ywy(k)− r̂Vwv(k). These estimated correlation matrices are then
substituted into the deduced filters. In this simulation, the smoothing
window w is set to be the Hann window.
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Fig. 1. Performance of the Wiener, tradeoff, and maximum SNR
filters as a function of the filter length L in a car noise condition: (a)
output SNR, (b) speech distortion index, and (c) PESQ. Simulation
conditions: αy = αv = 0.95, iSNR = 10 dB, N = 1, and the
PESQ score of the noisy signal is 2.375.

First, we study the performance of the Wiener, tradeoff, and
maximum SNR filters (without the time smoothing technique, i.e.,
N = 1) as a function of the filter length, L. The input SNR is 10 dB
and the value of all the forgetting factors is set to 0.95. The PESQ
score of the noisy signal is 2.375. The results are plotted in Fig. 1.
One can see from this figure that for the Wiener and tradeoff filters,
both the output SNR and PESQ first increase with L, then decrease
gradually, while the speech distortion index decreases monotonous-
ly. The results of the different tradeoff filters agree well with the
theoretical analysis. For µ > 1, the tradeoff filter reduces more
noise but it introduces more distortion to the desired speech signal
as compared to the Wiener filter. As for the maximum SNR filter,
it achieves the maximum SNR gain in comparison with the Wiener
and tradeoff filters, but it also generates the most speech distortion.

In the second simulation, we investigate the effect of smooth-
ing on the noise reduction performance. Due to space limitation,
we only present the results of the Wiener filter as a function of N .
The input SNR is, again, 10 dB, the value of all the forgetting fac-
tors is set to be 0.95, and the filter length, L, is set to be 13, 15,
and 20. Please note that N = 1 corresponds to the case without
time smoothing. The results are plotted in Fig. 2. One can see from
this figure that the output SNR first decreases then increases with N
while the speech distortion index increases monotonously with N .
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Fig. 2. Performance of the Wiener filter as a function of time s-
moothing length, N , in a car noise condition: (a) output SNR,
(b) speech distortion index, and (c) PESQ. Simulation conditions:
αy = αv = 0.95, iSNR = 10 dB, L = 13, 15, 20, and the PESQ
score of the noisy signal is 2.375.

Moreover, the PESQ first increases and then decreases. With prop-
er choice of the values of N and L, significant PESQ improvement
are achieved, e.g., L = 20, N = 3, the gain in PESQ is close to
1. It is clearly seen that time smoothing technique can help improve
performance. Besides improving noise reduction performance, time
smoothing can also help reduce the computational complexity as a
shorter filter length is needed to achieve similar performance, for in-
stance, L = 15 and N = 2 gives almost the same PESQ score as
L = 20 and N = 1.

7. CONCLUSIONS

In this paper, we presented a linear estimation technique for single-
channel noise reduction in the time domain, which combines the op-
timal filtering and smoothing techniques together. Specifically, a s-
moothing window is firstly applied to the time-domain noisy signal
so as to leverage the correlation between successive samples. Then,
three different noise reduction filters are derived based on various
criteria, including Wiener, maximum SNR, and tradeoff filters. Sim-
ulations were carried out to assess the proposed method. Significant
PESQ improvement was observed with a proper choice of the time
smoothing window and the filter length, which justified the effec-
tiveness of the proposed smoothing-and-filtering approach. While

it can be used to improve performance, the presented technique can
also be used to reduce the computational complexity of the optimal
filter technique as a shorter filter length is needed with smoothing
to achieve a similar performance with a longer filter length without
smoothing.

8. RELATION TO PRIOR WORK

Acoustic noise is omnipresent in our environments, which may bring
detrimental effects to speech communication and human-machine
interface systems such as cellular phones, automatic speech recog-
nition (ASR), hearing aids, audio bridging, teleconferencing, and
robotics. Noise reduction is the process of recovering a clean speech
signal of interest from microphone observations (either a single
microphone or multiple microphones) corrupted by additive noise
[1, 2]. A great deal of efforts have been devoted to addressing this
problem in the literature [9, 10, 11] and various methods have been
proposed, including subspace methods [12, 13, 14], optimal filtering
[3, 4, 15], statistical approach [16], spectral subtraction type of tech-
niques [17, 18], and data driven based machine learning methods
[19, 20], etc.

Some of the aforementioned methods conduct noise reduction
in the time domain, while others operate in transform domains [21],
among which the frequency domain or short-time-Fourier-transform
domain is widely adopted [9, 10, 11, 22]. Generally, working in the
frequency domain makes the implementation computationally effi-
cient due to the fast Fourier transform (FFT), but “musical noise”
[23] is a troublesome problem for noise reduction algorithms in this
domain. In comparison, time-domain methods are more computa-
tionally expensive, but they do not suffer from the musical noise
problem. Moreover, analysis of noise reduction performance in the
time domain can be easier than in a transform domain from a sta-
tistical viewpoint. As a result, it is still important to study noise
reduction in the time domain.

In this paper, we focused on the noise reduction problem in the
time domain. One of the most straightforward ways to estimate a
sample in this domain is to pass the noisy samples through a filter-
ing vector. The core issue then becomes one of finding a good filter,
which can improve the SNR without adding much distortion to the
speech of interest. In the literature, many different good filters are
derived, some are optimal from an optimization point of view while
others are suboptimal, which can provide a better tradeoff between
noise reduction and speech distortion. Examples of these filters in-
clude Wiener, maximum signal-to-noise-ratio (SNR) [15], linearly
constraint minimum variance (LCMV) [24, 25], minimum variance
distortionless (MVDR) [24], and tradeoff filters [4], which are all
derived from the mean-squared-error (MSE) criterion but with dif-
ferent constraints [26].

In this paper, we proposed a linear estimation approach to single-
channel noise reduction in the time domain with the ability to smooth
and filter the observation signal at the same time, thereby achieving
noise reduction. Smoothing techniques are widely used in noise re-
duction in the frequency domain in order to leverage the correlation
of adjacent frequency bins [27]. In this paper, the smoothing tech-
nique is introduced to the time-domain methods. The resulting ap-
proach consists of two steps. In the first step, a time-domain smooth-
ing window, e.g., Hanning window, rectangular window, Hamming
window etc., is applied to the noisy signal. Then, in the second step,
a noise reduction filter is applied to the smoothed signal to further
achieve noise reduction. We considered three different filters, i.e.,
maximum SNR, Wiener, and tradeoff filters, which are derived us-
ing different criteria.
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