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ABSTRACT

For a musical instrument sound containing partials, or modes, the
behavior of modes around the attack time is particularly important.
However, accurately decomposing it around the attack time is not an
easy task, especially when the onset is sharp. This is because spectra
of the modes are peaky while the sharp onsets need a broad one. In
this paper, an optimization-based method of modal decomposition is
proposed to achieve accurate decomposition around the attack time.
The proposed method is formulated as a constrained optimization
problem to enforce the perfect reconstruction property which is im-
portant for accurate decomposition. For optimization, the alternating
direction method of multipliers (ADMM) is utilized, where the up-
date of variables is calculated in closed form. The proposed method
realizes accurate modal decomposition in the simulation and real pi-
ano sounds.

Index Terms— Constrained filtering, Fourier transform, perfect
reconstruction, causality, piano.

1. INTRODUCTION

Modal decomposition is one of the most fundamental tools for ana-
lyzing a musical instrument sound containing partials, or modes, be-
cause the decaying processes of the modes greatly affect the timbre
of musical instruments [1,2]. Each mode may decay with a com-
plicated decay process which characterizes the sound. For exam-
ple, in the piano, transfer of energy among coupled strings, bridge
and soundboard causes special decay patterns of the modes called
“double decay” and “beats” which make the piano sound distinc-
tive [3-7]. Since modes contain such significant information of a
musical instrument sound, modal decomposition plays an important
role in the studies on a musical instrument sound [7-9].

Modal decomposition also has an important role in synthesiz-
ing musical instrument sound based on models described later. As
modes contain significant information of the corresponding sound,
parametric modeling of each mode is often considered in the context
of sound synthesis. Many models have been proposed in this respect,
including exponentially damped sinusoidal (EDS) model [10-13],
and damped and delayed sinusoidal (DDS) model [14-17] as the
extension of EDS model. In order to represent complex decaying
process such as “double decay” and “beats”, recent years, adaptive
harmonic model (AHM) has been applied to modeling of musical
instruments sound [18-25]. In AHM, each mode is represented by
the product of time-varying amplitude and a frequency modulated
sinusoid. For using these models, modal decomposition is needed
for estimating model parameter [26], especially in AHM. Therefore,
a modal decomposition method accurately separating each mode is
required.

For percussive instruments such as bells and plucked/struck
string instruments (e.g. guitars and pianos), the behavior of modes
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around the attack time is an important factor for characterizing their
timbre. However, accurately decomposing these instrument sounds
into modes around the attack time is not an easy task because these
instruments sound has sharp onset at the attack time. The spectra
of modes are peaky but wideband owing to the sharp onset, and
this obstructs accurate modal decomposition around the attack time.
Hence, modal analysis around the attack time is often ignored due
to this difficulty, and it takes into account only the decay part.

In this paper, an optimization-based method of modal decom-
position is proposed to overcome the accuracy deficient around the
attack time. It is formulated as an optimization with constraints of
perfect reconstruction and causality in order to eliminate the phase
delay and pre-ringing. For optimization, the alternating direction
method of multipliers (ADMM) is utilized, where the update of vari-
ables is calculated in closed form. The performance of the proposed
method is shown by simulation and the real piano sound.

2. MODAL DECOMPOSITION BASED ON FILTERBANK

A mode of a musical instrument sound corresponds to a single spec-
tral peak. In this paper, a sound which consists of attack followed by
decaying partials without noticeable frequency modulation is con-
sidered, such as percussive, plucked string, or struck string instru-
ments. That is, signals with strong frequency modulation like vi-
brato are outside the scope of this paper. Based on this assumption,
modal decomposition using a filterbank is considered here.

Let a signal of given musical instrument sound be denoted by
s € RE, and its Fourier spectrum be represented by § € C%, where
L is the length of the signal. Hereafter, Fourier transform of z is
denoted by z (= Fz), where F € C*** is the Fourier transform
matrix. Assuming the above condition to the signal s, ith mode can
be extracted by linear filtering in the frequency domain as

%; = Hi8, (1)

where H; € CF*L is a diagonal matrix whose diagonal elements
are the frequency response of a predefined filter h; € C* designed
specifically for the ith mode x;. By preparing N bandpass filters
corresponding to the /N modes, linear filtering given by Eq. (1) ap-
proximately obtains the modes. The accuracy of this decomposition
depends on the design strategy of h;.

2.1. Potential issues of linear filtering

It is well-known that linear filtering cannot achieve causality with-
out phase delay. If a filter is causal, i.e., no component is generated
before the onset, then there exists some phase delay which shifts
the waveform. Such delay in phase greatly reduces the accuracy of
modal decomposition. On the other hand, if a filter does not have
phase delay (zero-phase), some components so-called pre-ringing
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exist before the attack. This trade-off between phase delay and pre-
ringing indicates that a linear filter cannot avoid deformation of an
extracted mode. Steep attack of a mode is always corrupted by a lin-
ear filter, and thus accurate modal decomposition around the attack
time cannot be accomplished by linear filtering. In other words, an
accurate decomposition method must be a non-linear process.

2.2. Interpretation of linear filtering as least squares method

Before proceeding to the proposed method, an interpretation of lin-
ear filtering as the least squares method is introduced here. This in-
terpretation will illustrate the relation between the proposed method
and the ordinary linear filtering.

Let a filter I:L admit the inverse I:I; L Then, linear filtering in
Eq. (1) can be rewritten as

H 'x; =38, 2)
which can be interpreted as the least squares method,
min L [|[H; % — 8| 3)
x 20 2’

whose solution %X; coincides with the original filtering. This interpre-
tation indicates that a linear filtering can be recast to an optimization
problem which is a more flexible form. Let every mode be denoted
by x. Then, in order to consider all modes simultaneously, modal
decomposition by a linear filterbank is formulated as

o lyao1. A
min §||H 1x—d”;7 4

where x = [x71,...,%%5]7 € CNE, %7 is the transpose of %,
d € CNMT is the vector concatenated N copies of §, and H <
CNEXNL is the diagonal matrix whose diagonal elements are given
by [flf, e ﬁqj\}]T This representation allows a compact notation
of the proposed method in the next section.

3. PROPOSED METHOD

As in the previous section, linear filtering can be interpreted as the
least squares problem. This point of view allows us to incorporate
additional constraints into the filtering process. In this section, we
propose a modal decomposition method by adding constraints into
the least squares problem so that the undesirable trade-off discussed
in Section 2.1 is avoided, which results in much higher accuracy
comparing to the linear filterbank. The proposed method consists of
two constraints, perfect reconstruction and causality, and each con-
straint is explained one-by-one in the preceding subsections.

3.1. Constraint of perfect reconstruction condition

For accurate modal decomposition, a perfect reconstruction property
is considered first. We say that the decomposed modes satisty the
perfect reconstruction condition when s = ZZV: 1 Xi holds. That is,
the original signal can be perfectly reconstructed by adding the de-
composed modes. By imposing this property into Eq. (4), a filtering
problem with perfect reconstruction constraint is defined as

min %Hﬂ*lfc—&ui s.t. )

After solving this problem, filtered signals satisfying the perfect re-
construction condition can be obtained.
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In order to eliminate the potential issues of linear filtering into
the proposed method, the formulation is modified in three parts.
Firstly, let H' be replaced by an arbitrary diagonal matrix W.
This modification allows a zero in the diagonal entries of W, while
H~' does not allow it owing to the inversion. Secondly, to han-
dle the complicated component caused by the attack, let a residual
xn+1 € R, which is expected to be a pulse at the attack time,
be also considered. Then, the perfect reconstruction condition is re-
laxed to s = Zf\; ng X;, where a non-modal component is allowed
in the xn41. Thirdly, although the fidelity to the data is considered
in both the first and second terms of Eq. (5), the data in the first term
is omitted (data fidelity is considered only in the constraint). Based
on these three modifications, a modal decomposition problem of the
following form in the frequency domain is considered:

N+1

+

2 A
, St s

(6)

Xiy
1

min %HW)}

%

where x = [x7,...,%x51]7 € CHH+DE the diagonal matrix

W e CWHDLXINHDL yhose diagonal elements are given by
[wi,...,whi1]", and w; € C* is a given weight for ith mode in
the frequency domain.

3.2. Closed form solution to Eq. (6)

Let W; € C¥*% be a diagonal matrix whose diagonal elements are
given by w;. Then Eq. (6) can be rewritten into an unconstrained
optimization problem,

1 N
LS wis
=1

which can be solved for each frequency separately:

1 L2
3 Z|wi§xz‘g| +
i=1

where £ is the frequency index, w;¢ is the £th element of w;, Z¢ is
the £th element of X, and 3¢ is the {th element of 8. The solution to
Eq. (8) is obtained by

1 N
b+ W =Y %) @

i=1
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X1,..,XN

1 N, 2
Slwavine(se =Y @) ®)

i=1
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Tie =

©)

|sta

if the denominator is not zero. By denoting the fraction with g;¢
which represents the gain, the modal decomposition defined by
Eq. (6) is given as

(10)

where G; € R*” is the diagonal matrix whose diagonal entries are
&, and & = [gi1,...,9iL] € R is gain for extracting ith mode.

These gains depend on the ratio of the weights. Simply observ-
ing that g;c = 1 and g(;z5¢ = 0 if w;e = 0 for any frequency
index £, Eq. (6) can be interpreted as a zero-phase filterbank with
the perfect reconstruction property which makes the modes exclu-
sive of each other in the frequency domain.

% = Gis,

3.3. Proposed forulation with causality constraint

Although the perfect reconstruction property is indispensable for the
accurate decomposition, it does not eliminate the pre-ringing which



deteriorates the accuracy around the attack time. Therefore, an addi-
tional constraint corresponding to causality is considered:

N+1

z s.t. ézz

=1

%i, [F7'%] =0 (n<7a),

an
where n is the time index and 74 is time index corresponding to the
attack time. Since this causality constraint explicitly eliminates the
pre-ringing, modal decomposition without phase delay and/or pre-
ringing is realized by solving Eq. (11).

.1 -
mﬁm §HWX

3.4. ADMM algorithm for solving Eq. (11)

In this paper, ADMM [27, 28] is adopted for solving Eq. (11).
ADMM is an algorithm which can solve the following convex opti-
mization problem:

s.t. (12)

min
xeCL zecl

fx)+9(2)

X =1z,

where f and g are proper and lower-semicontinuous convex func-
tions. For any zo, up and p > 0, ADMM is given by

Xpt1 = proxpf(zk — uk), (13)
Zit1 = proxpg(xk+1 + ug), (14)
Ugt1 = Uk + Xkt1 — Zki1, (15)

where £ is the iteration index, and prox , (+) is the proximity opera-
tor of f defined by [29]

. 1
prox,;(y) = argmin f(x) + 3 Ily - x[3.  (16)

For applying the ADMM algorithm to the proposed method in
Eq. (11), it is reformulated as the following equivalent problem:

o1 5 5 . P
min o [Wx[; +xo, (%) + x5 (2) st x=2, (A7)

where x ¢ is the indicator function of a closed nonempty convex set
C (ie., xc(x) = 0ifx € C, and xc(x) = oo otherwise), C; and
C> are the sets corresponding to each constraint in Eq. (11),

N+1g

Cr={xeC™WtVr | s=5N% 1, (18)
Co={2eC™¥™V | F'2],=0 (n<7a)}. (19
Then, by regarding the functions in Eq. (17) as
. 1 N N . .
F) =S IWX[l; + X (%), 9(2) =xc:(2),  (20)
the ADMM algorithm for Eq. (11) is obtained as follows:
ﬁk+1 = prOpr(ik — ﬁk), (21)
Zi+1 = Po, (Xp+1 + ), (22)
U1 = G + X1 — Zt1, (23)

where Pc, is metric projection onto C which can be calculated by

N

Pc,(z) = FPCé (F~"2z), 24)
because the Fourier transform matrix F' is unitary [30],
_ 0 n<rTa,
Pcé (2n) = { zn otherwise, 25
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and €4 = { z € RNV | 2, =0 (n < 74) }. The proximity
operator in the X-update is given by the solution to

1 1
min 5|\W§<\|§+an(—ykug s.t. (26)

which is a constrained optimization problem similar to Eq. (6).
Therefore, Eq. (26) can be solved analytically in the same way as
Eq. (9), which is written as

Zig = [vie + p(pie — mie) |/ Gie, 27
where each term is defined as follows,
vie = [, (wiel” + p)se, (28)
Mg = (Zl#H#M(\WP +p))?3i§7 (29)
Nie = Zl# (1_[].7H7Z.(\111]'e5|2 + P)st)7 (30)
Ge= 3L, (el + ). &

By substituting §;c = Zi¢ — Us¢ in the above formulas, X-update in
Eq. (21) can be calculated easily.

A decomposed result of the proposed method is obtained by it-
erating Eqgs. (21)—(23) from arbitrary initial values, where Eqs. (21)
and (22) are calculated by Eqgs. (27) and (24), respectively. While
an arbitrary choice is allowable, one preferable choice for the initial
value z is a solution to Eq. (6) which is given in Eq. (9).

3.5. Weighting rule for the proposed method

Choice of the weight in Eq. (11) is important since it determines the
decomposed result. As the weight penalizes the energy of each fre-
quency component, the ith mode is dominated by some frequencies
at which the weight w; contains small values. On the other hand, fre-
quencies with large weights do not remain in the result much. That
is, the weight should be set small around the center frequency of the
target mode and large around that of the non-target modes. To do so,
the center frequency of each mode is required.

For determining the center frequencies of modes, the auto-
regressive (AR) model is utilized. By calculating AR spectrum § of
a signal s, the center frequency f; of the ith mode is obtained by the
complex argument of the selected poles p;. The amplitude of the
AR spectrum a; = [§(p;/|p:|)| is also utilized in the weight design.

Based on the information obtained by AR modeling, a weight-
ing rule for the modal decomposition is proposed. Firstly, a res-
onance filter 6, with a conjugate pair of poles, p; and p;, is con-
structed. Then, it is normalized to have the unit amplitude FN)Z =
b:/ maxg |h:(e*?)|. Utilizing these elements, the weighting matrix
corresponding to the ¢th mode is designed by

W, = WIPWee, 32)
where each matrix Wg‘) € CL*L is a diagonal matrix of wz(f) ecCt
whose elements are calculated as

1

i
wsP

el

peaks
w, € =

N ~
= > a;lbjel.

J#

1, (33)

From the construction, w‘;ip consists of a single dip at the center
frequency of ith mode, and W™ consists of N — 1 peaks at the
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Fig. 1. An example of the proposed weights w''F, wP™**, w;
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Table 1. SDR of the decomposed modes of the simulated signal.

SDR [dB]
Modes 1st 2nd | 3rd 4th
Causal filter 50.6 2.8 2.0 2.7
Zero-phase filter 339 2.7 2.0 2.7
STFT(a) 354 | 264 | 243 | 240
STFT(b) 434 | 28.7 | 27.2 | 263
Proposed method | 111.1 | 97.4 | 96.2 | 93.5

other frequencies. An example of the proposed weights is illustrated

in Fig. 1. For the residual, a special weight w'c3 is proposed,

N
winghe =AY ajlbjel, (34)
j=1

which eliminates all modes from the residual, where A > 0 is a
parameter adjusting the energy of the residual.

4. EXPERIMENTS

4.1. Simulation

The proposed method was applied to a simulated musical instrument
sound which was synthesized by adding four impulse responses of
resonance filters whose center frequencies were fi = 527, fo =
1731, f3 = 3798, and fi = 5952 Hz, and the absolute value of
the poles which corresponded to the resonance filters were |p1| =
0.99996, |p2| = 0.99978, |ps| = 0.99965, and |ps| = 0.99959.
They were obtained by approximation of a bell sound with 500 order
AR model using Burg’s method [31]. Here, the residual was not con-
sidered which corresponds to the limit as the parameter of the resid-
ual A to co. The proposed method was compared with four other
methods: causal filters, zero-phase filters, and the short-time Fourier
transform (STFT) with two kinds of parameters. The sampling rate
was 44100 Hz, the absolute values of the poles of the two types of
filters were 0.99, window and overlap length for STFT were respec-
tively 1024 samples and 512 samples in STFT(a), and 512 samples
and 256 samples in STFT(b). The performance of decomposition
was evaluated by Signal-to-Distortion Ratio (SDR) [32].

SDR of the proposed method was higher than those of other
methods, especially for higher order modes as shown in Table 1.
This is because modal decomposition by filters cause mode-mixing
in high order modes. On the other hand, the proposed method was
able to eliminate such mode-mixing phenomena. In contrast to STFT
which does not maintain the energy of modes, the proposed method
maintains it by the perfect reconstruction constraint that leads to the
higher performance of the proposed method. The causal filters re-
sulted in the phase delay and the zero-phase filters caused the pre-
ringing, while STFT also resulted in the pre-ringing depending on
the window length. On the other hand, modes decomposed by the
proposed method had no phase delay and pre-ringing.

634

0.1 80
60
0.05
3 Ey 40
é 0 e 20
-0.05
-20
0.1 40
0 1 2 3 4 5 0 1 2 3 4 5
Time [s] Frequency [kHz]
(a) wave form of the 1st mode (b) spectrum of the 1st mode
0.1 80
60
0.05
4 40
2 =
2 0 3 20
-0.05
-20
-0.1 40 L
0 1 2 3 4 5 0 1 2 3 4 5
Time [s] Frequency [kHz]
(c) wave form of the 2nd mode (d) spectrum of the 2nd mode
0.1 80
60
0.05
2 = 40
= =
E“ 0 E 20
-0.05
-20
0.1 40
0 1 2 3 4 5 0 1 2 3 4 5

Time [s] Frequency [kHz]

(e) wave form of the residual (f) spectrum of the residual

Fig. 2. Results of the proposed method applied to a real piano sound.

4.2. Application to piano sound decomposition

A piano sound of A4 was decomposed into 16 modes and the resid-
ual to see the applicability of the proposed method to the real data.
The piano sound was also approximated with 1000 order AR model
by Burg’s method [31] where the sampling rate was 96000 Hz. The
weight matrix was constructed by the proposed weighting rule in
Section 3.5, and the parameter of the residual was set to A = 0.01.

Waveforms and spectra of two decomposed modes and the resid-
ual obtained by the proposed method are shown in Fig. 2. Accord-
ing to Fig. 2 (a) and (c), decomposed modes are of long duration,
and those spectra are peaky as shown in Fig. 2 (b) and (d). In ad-
dition, “double decay” and “beats” which are typical to the piano
sound [3-7] can be seen in the decay processes of these modes. On
the other hand, according to Fig. 2 (e) and (f), the residual was of
short duration and wide band. Hence, the residual should be rep-
resented by the non-modal percussive component around the attack
time which were produced by the hammer strike.

5. CONCLUSION

In this paper, the modal decomposition method of musical instru-
ment sound is proposed. By interpreting a filtering process as
the least squares method, the proposed method is formulated as
a constrained optimization problem which enables to incorporate
two constraints, so that undesired trade-off of linear filtering is
circumvented. The proposed optimization problem is solved by
the ADMM algorithm, where the closed form solution of the con-
strained quadratic problem allows an easy and fast update of the
variables.
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