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ABSTRACT

The piano is one of the most popular and attractive musical
instruments that leads to a lot of research on it. To synthe-
size the piano sound in a computer, many modeling meth-
ods have been proposed from full physical models to approxi-
mated models. The focus of this paper is on the latter, approx-
imating piano sound by an IIR filter. For stably estimating
parameters, the Kautz model is chosen as the filter structure.
Then, the selection of poles and excitation signal rises as the
questions which are typical to the Kautz model that must be
solved. In this paper, sparsity based construction of the Kautz
model is proposed for approximating piano sound.

Index Terms— IIR filter design, sparse optimization, ℓ0
constrained least squares, autoregressive (AR) spectrum esti-
mation, difference of convex (DC) algorithm.

1. INTRODUCTION

The piano is one of the most popular and attractive musical
instruments, and therefore a lot of research has been con-
ducted including piano sound synthesis [1–15]. For synthe-
sizing the piano sound in a computer, full physical models are
considered that aim to model every physical component of the
piano by differential/integral equations which are solved nu-
merically [1, 2]. On the contrary, many approximation meth-
ods have also been proposed [3–15] because the full physi-
cal models are computationally expensive that restricts their
practical applications. For synthesizing piano sound approxi-
mately, signal processing techniques are utilized [3,4]. A rep-
resentative example would be digital waveguide [5–13] which
takes advantage of the simple form of the d’Alembert’s so-
lution to the one-dimensional wave equation that can be ap-
proximated by delay lines. The modal based methods [13–15]
using IIR (infinite impulse response) filters [16] are also the
popular method to approximate the piano sound. These meth-
ods based on delay lines and filters are preferable for real-time
synthesis owing to their computational efficiency.

In general, estimating parameters of IIR filters is not easy
because of the non-linearity of their parameters. Estimated
parameters may result in unstable IIR filters, and therefore
special cares are necessary for utilizing them as the model. On
the other hand, fixed-pole filters including the Kautz model

[17–19] can be optimized quite easily because of linearity in
parameters. Applying Kautz model, estimating parameters of
IIR filter can be easier. Although such easiness is a very at-
tractive property, it comes with prices that poles have to be
fixed in advance. That is, the Kautz model is not flexible that
may require more degrees of freedom than necessary. This
property is not preferable for real-time synthesis because it
ends up with either high computational cost or low approxi-
mation quality. It might make the Kautz model less attractive
for piano sound approximation even though the stability and
easiness of estimating parameters are quite beneficial.

In this paper, a method for reducing such unwanted prop-
erties of the Kautz model is proposed for approximating piano
sound. The issues of the Kautz model are on the selection of
poles and input signal as described in Section 2.1. That is, the
poles have to be decided beforehand to estimate the parame-
ters, where obtaining the poles crucial to the approximation
is itself a difficult problem. In addition, for sound synthesis,
the excitation signal inputted to the Kautz model can also be
arbitrary. Then, better methods for selecting the poles and the
exitation signal are necessary. In the proposed method, these
two issues are resolved by sparsity based methods: the sparse
linear prediction and ℓ0 constrained least squares method.
By applying the proposed method, the Kautz model becomes
easier to approximate piano sound compared with previous
modal based method.

2. SIGNAL APPROXIMATION BY KAUTZ MODEL

A Kautz model is a fixed-pole filter designed so that its param-
eters can be easily optimized. Let a set of poles {p1, · · · , pI}
and input signal e(n) be fixed first. Then, the transfer func-
tions of a pair of orthonormal basis functions are given by

Ψ±
i (z) =

√
1− |pi|2 |1± pi| (z−1 ∓ 1)√
2 (1− piz−1)(1− p∗i z

−1)

×
i−1∏
j=1

(z−1 − pj)(z
−1 − p∗j )

(1− pjz−1)(1− p∗jz
−1)

, (1)

where p∗i is complex conjugate of pi. The conjugate pairs
of the poles are considered for making the filter response
real valued. By inputting the signal e(n) into the 2I filters

626978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



{Ψ+
i (z),Ψ

−
i (z)}Ii=1, the corresponding 2I filtered signals

{κ+
i (n), κ

−
i (n)}Ii=1 are obtained. Then, the output signal

y(n) is defined by the linear combination of them,

y(n) =
I∑

i=1

[
θ+i κ

+
i (n) + θ−i κ

−
i (n)

]
, (2)

where {θ+i , θ
−
i }Ii=1 is the set of coefficients. This model is

linear in these coefficients, and therefore they can be easily
optimized in contrast to the ordinary rational filters which are
usually non-linear in their parameters.

Let s(n) be a piano sound to be modeled. Then, the aim
of this research is to approximate s(n) by a parametric model
which has a few degrees of freedom. Usually, the parameters
of the Kautz model are estimated by the least squares method:

Minimize
{θ+

i ,θ−
i }I

i=1

N∑
n=1

∣∣∣ s(n)− I∑
i=1

[
θ+i κ

+
i (n)+θ−i κ

−
i (n)

] ∣∣∣2, (3)

where N is length of the piano signal s(n). After the param-
eters {θ+i , θ

−
i }Ii=1 are estimated, the approximated signal can

be obtained by (i) inputting the signal e(n) into the IIR filters
{Ψ+

i (z),Ψ
−
i (z)}Ii=1 in Eq. (1), and (ii) taking the linear com-

bination of them as in Eq. (2) with the estimated parameters.

2.1. Two questions arise from Kautz modeling

The easiness of the Kautz model on its parameter estimation
comes with a price of restriction on two important factors:
poles {pi}Ii=1 and input signal e(n). Since the poles must
be fixed in advance, their suitable selection is crucial in the
Kautz model. Moreover, the input signal also has to be fixed
beforehand as it can be arbitrary for our purpose. In addition,
input signal whose energy is concentrated at the beginning is
preferable for less memory usage. That is, the following two
questions must be resolved:

• How to decide the effective poles {pi}Ii=1 while the
number of them should be small as possible.

• How to decide the input signal e(n) whose energy
should be concentrated within the small time interval.

In the next section, an answer to these questions in terms of
sparsity is proposed.

3. PROPOSED METHOD

As mentioned in the introduction, the order of the filter should
be low for implementation. However, this requirement con-
tradicts with the Kautz model because it cannot optimize the
poles. That is, the Kautz model usually requires more poles
than necessary to achieve a certain approximation accuracy
since preparing poles critical for the approximation in ad-
vance is generally difficult. In addition, for saving the com-
putational resources, the input signal for exciting the filter

response should have small number of non-zero elements,
which must be fixed in advance for estimating parameters of
the Kautz model. In this section, methods of selecting the
poles and the excitation signal are proposed to circumvent the
above difficulties.

3.1. Sparse selection of poles after candidates generation

As stated in the previous section, the Kautz model requires
fixed poles in advance, and they cannot be optimized within
the framework of that model. Therefore, to obtain a better
set of poles, we propose a method of generating several can-
didates of the poles and a method of sparsely selecting the
prominent poles from them, which is an often-utilized strat-
egy in acoustics [20–24].

Firstly, candidates of the poles must be generated to con-
struct the filters. This process is important because the final
accuracy of the approximation is determined by the quality of
candidates. Therefore, we propose to generate the candidate
from the signal to be approximated. By using an autoregres-
sive (AR) spectral estimation technique [25], a set of poles
suitable for the approximation can be estimated from the sig-
nal. Multiple data (including the target signal) may be utilized
for the same note to generate multiple sets of poles because
a single data only gives a single set of poles which may not
be optimal in terms of the Kautz modeling. By this process,
similar but slightly different poles, which are all suitable for
approximating a signal of that note, are obtained. Note that
the best set of poles for approximating the signal s(n) de-
pends on the input signal e(n) which excites the filters.

Then, the poles prominent for approximating the target
signal must be selected from them. In this paper, formula-
tion by an ℓ0 constrained optimization problem is proposed to
accomplish such selection. Let Eq. (3) be shortly written as

Minimize
θ

N∑
n=1

∣∣ s(n)− κ(n)Tθ
∣∣2, (4)

where κT denotes transpose of κ, and

θ = [θ+1 , θ
−
1 , θ

+
2 , θ

−
2 , . . . , θ

+
I , θ

−
I ]

T , (5)

κ(n) = [κ+
1 (n), κ

−
1 (n), . . . , κ

+
I (n), κ

−
I (n)]

T . (6)

Our proposal is to impose ℓ0 constraint into this problem as

Minimize
θ

N∑
n=1

∣∣ s(n)−κ(n)Tθ
∣∣2 subject to ∥θ∥0 ≤ P, (7)

where ∥ · ∥0 is the number of non-zero elements so-called
ℓ0-norm which is regarded as an ideal measure of sparsity,
and P is the desired number of selected poles. That is, the
selection of the poles is recast into selection of positions of
non-zero elements. A solution to this problem gives least
squares approximation of the signal by P pole pairs while
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the selected poles are automatically determined. Therefore,
by solving this problem defined for a large number of candi-
dates obtained as in the previous paragraph, the best P poles
are expected to be selected afterward.

The difficulty associated with this proposal is basically
owing to the non-convexity of the above optimization prob-
lem. Therefore, a recent algorithm based on the difference
of convex (DC) programming called proximal DC algorithm
[26] is employed in this paper for solving Eq. (7).

3.2. Generating excitation signal based on sparse LPC

In the above proposal, a large number of poles are obtained in
advance, and the optimization problem is considered. How-
ever, the intermediate signals denoted by κ(n) in Eq. (7) not
only depend on the poles but also depend on the inputted ex-
citation signal e(n). That is, the input signal e(n) have to
be defined before running the algorithm for solving Eq. (7).
Here, we propose to utilize a linear prediction technique to
generate such excitation signal.

Linear prediction is the well-known parametric signal
modeling technique which approximates the signal by a pre-
diction filter. It allows to synthesize the original signal from
the prediction residual through the corresponding synthesis
filter. Therefore, residual of linear prediction can be regarded
as the component of signal that is difficult to be approximated
by a filter. In other words, predictable part of the signal should
be easy to be approximated by the Kautz model. Then, it can
be presumed that such residual may be suitable for the input
excitation signal e(n) of the Kautz model.

However, residual generated by the ordinary linear pre-
diction may not improve the approximation accuracy of pi-
ano sound as shown in the next section. Instead, we propose
to use the sparse linear prediction technique [27, 28] for gen-
erating the excitation signal. The linear prediction model of
L coefficients is defined as

x(n) =
L∑

l=1

alx(n− l) + e(n), (8)

where e(n) is the prediction residual, and al is the coefficient
of the linear prediction model. The ordinary linear prediction
is based on the ℓ2-norm as it is formulated by the least squares
method,

Minimize
{al}L

l=1

N∑
n=1

∣∣∣ s(n)− L∑
l=1

als(n− l)
∣∣∣2. (9)

In contrast, the sparse linear prediction is based on the ℓ1-
norm which induces sparsity,

Minimize
{al}L

l=1

N∑
n=1

∣∣∣ s(n)− L∑
l=1

als(n− l)
∣∣∣, (10)

Therefore, its residual e(n) = s(n)−
∑L

l=1 als(n−l) is more
sparse than the ordinary one, and its energy is concentrated
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Fig. 1. Piano sound of A4 (441 Hz) and its residual of sparse
linear prediction in Section 3.2. The enlarged view shows the
first 100 samples which illustrate that most of the energy of
the residual is concentrated in the first few samples.

at certain time instances. This residual of the sparse linear
prediction is used as the excitation signal of the Kautz model.

This non-smooth variant of least squares method is called
as least absolute deviations, and there exist many algorithms
for solving it. As it is non-smooth convex optimization prob-
lem, the well-known alternating direction method of multipli-
ers (ADMM) [29, 30] is adopted in this paper to solve it.

3.3. Summary of the proposed method

The proposed method for approximating piano sound by us-
ing the Kautz model is summarized as follows:

1. Get audio signal of the target piano sound s(n).
2. Apply sparse linear prediction to the target sound to ob-

tain a prediction residual e(n) which is utilized as the
excitation signal of the Kautz filters.

3. Generate a large number of candidates of poles for the
Kautz modeling from piano sound by an AR spectral
analysis technique.

4. Construct the Kautz filter {Φ±
i } from obtained poles in

the previous step.
5. Input the excitation signal e(n) obtained by sparse lin-

ear prediction in Step 2 to the filters for calculating
κ(n) in Eq. (7).

6. Solve Eq. (7) by the proximal DC algorithm to obtain
P poles and the corresponding parameters {θ±i }.

After executing these steps, the result ends up with the Kautz
model {Φ±

i } with the coefficients {θ±i }, and the excitation
signal e(n). Then, the approximated piano sound is generated
by inputting e(n) to the filters and taking the linear combina-
tion using estimated coefficients as introduced in Section 2.
Since the number of poles P can be set to a desired number,
the accuracy and the computational cost can be adjusted.
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Fig. 2. Waveforms of the target and approximated signals. P is the number of selected poles and RE denotes the relative error.

4. EXPERIMENTS

The proposed method was applied to a real piano sound (C.
Bechstein) of A4 (441 Hz). Since the proposed method con-
sists of several steps, each step is explained in each preceding
paragraph.

Firstly, sparse linear prediction was applied to obtain the
excitation signal e(n). The obtained residual is shown in
Fig. 1, where the length of prediction filter L in Eq. (8) was
1000. As shown in the figure, the residual has quite small
values at most of the duration, and the remaining energy was
concentrated around the first 10 samples. Therefore, these
samples are expected to contain the components difficult to
be represented by a filter.

Next, by using first 10 samples of this residual as the ex-
citation signal, the parameters of the Kautz model were esti-
mated. For generating candidates of the effective poles, AR
model of 1000 order was applied to 12 piano sounds of the
same note. Then, only P important poles were selected from
those poles by solving Eq. (7). The target signal and its ap-
proximated version are shown in Fig. 2 for P ∈ {10, 20, 50},
where RE denotes the relative error of the approximation:

RE =

( N∑
n=1

|s(n)− ŷ(n)|2
) 1

2/ ( N∑
n=1

|s(n)|2
) 1

2

, (11)

where s(n) is the target signal and ŷ(n) is its approximation.
From this result, it can be seen that the approximation error
becomes smaller as the number of selected pole increases.
The enlarged view on the figure (c) confirms that the approx-
imated sound has the similar phase as the target signal. Note
that the number of selected poles P trades the computational
complexity and approximation accuracy. Therefore, the num-
ber of poles can be choosen depending on desired computa-
tional cost, and the approximation error can be checked to
confirm whether that amount of error is acceptable.

Finally, to see the effect of sparse linear prediction, the
relative error was compared with the ordinary linear predic-
tion. After obtaining the residual, first M samples were used
as the input excitation of the Kautz model. The relative error
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Fig. 3. Relative error of the approximation in terms of the
length of the excitation signal.

is shown in Fig. 3, where the horizontal axis represents the
length of the utilized residual M . In this figure, the left most
point (M = 1) corresponds to the unit impulse which may
be the easiest choice of the excitation signal. From Fig. 3,
the error can be reduced comparing to the unit impulse only
when the sparse linear prediction is used, and the ordinary
linear prediction does not decrease the error. This result con-
firms that sparsifying the residual is important for generating
a better excitation signal based on the framework of linear
prediction.

5. CONCLUSION

In this paper, a new modal based method for approximating
piano sound by the Kautz model was proposed. The proposed
method aims to resolve the two issues of the Kautz model by
two sparsity-aware optimization. By applying the proposed
method to a real piano sound, it was confirmed that the two
kinds of sparsity are important for approximating it. For the
future work, degree of sparsity should be enhanced to obtain a
better excitation signal, and listening tests are necessary in the
evaluation of the proposed method. Moreover, the proposed
method should be compared with the previous methods.

629



6. REFERENCES

[1] A. Chaigne and A. Askenfelt, “Numerical simulations of pi-
ano strings. I. a physical model for a struck string using finite
difference methods,” J. Acoust. Soc. Am., vol. 95, no. 2, pp.
1112–1118, 1994.
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loss filter for waveguide piano synthesis,” in Proc. Int. Comput.
Music Conf., 2005.

[8] B. Bank, “Nonlinear interaction in the digital waveguide with
the application to piano sound synthesis.,” in Proc. Int. Com-
put. Music Conf., 2000.

[9] G. E. Garnett, “Modeling piano sound using waveguide digital
filtering techniques,” in Proc. Int. Comput. Music Conf., Sep.
1987, pp. 88–95.

[10] M. Karjalainen, “1-D digital waveguide modeling for im-
proved sound synthesis,” in IEEE Int. Conf. Acoust., Speech,
Signal Process. (ICASSP), May 2002, vol. 2, pp. II–1869–II–
1872.

[11] J. O. Smith and S. A. Van Duyne, “Commuted piano synthe-
sis,” in Proc. Int. Comput. Music Conf., Sep. 1995, pp. 335–
342.

[12] J. Bensa, S. Bilbao, R. Kronland-Martinet, and J. O Smith III,
“The simulation of piano string vibration: From physical mod-
els to finite difference schemes and digital waveguides,” J.
Acoust. Soc. Am., vol. 114, no. 2, pp. 1095–1107, 2003.

[13] B. Bank, F. Avanzini, G. Borin, G. De Poli, F. Fontana,
and D. Rocchesso, “Physically informed signal processing
methods for piano sound synthesis: A research overview,”
EURASIP J. Adv. Signal Process., vol. 2003, no. 10, pp. 941–
952, Sep. 2003.

[14] B. Bank, S. Zambon, and F. Fontana, “A modal-based real-
time piano synthesizer,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 18, no. 4, pp. 809–821, 2010.

[15] S. Zambon, H. M. Lehtonen, and B. Bank, “Simulation of
piano sustain-pedal effect by parallel second-order filters,” in
Proc. 11th Int. Conf. Digit. Audio Eff. (DAFx-08), Sep. 2008,
pp. 199–204.

[16] B. Bank, “Perceptually motivated audio equalization using
fixed-pole parallel second-order filters,” IEEE Signal Process.
Lett., vol. 15, pp. 477–480, 2008.

[17] B. Ninness and F. Gustafsson, “A unifying construction of or-
thonormal bases for system identification,” IEEE Trans. Au-
tom. Control, vol. 42, no. 4, pp. 515–521, 1997.

[18] G. Vairetti, T. van Waterschoot, M. Moonen, M. Catrysse, and
S. H. Jensen, “Sparse linear parametric modeling of room
acoustics with orthonormal basis functions,” in 22nd Eur. Sig-
nal Process. Conf. (EUSIPCO), Sep. 2014, pp. 1–5.

[19] G. Vairetti, E. De Sena, M. Catrysse, S. H. Jensen, M. Moo-
nen, and T. van Waterschoot, “A scalable algorithm for physi-
cally motivated and sparse approximation of room impulse re-
sponses with orthonormal basis functions,” IEEE/ACM Trans.
Audio, Speech, Lang. Process., vol. 25, no. 7, pp. 1547–1561,
2017.

[20] K. Yatabe and Y. Oikawa, “Optically visualized sound field re-
construction based on sparse selection of point sound sources,”
in IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP),
Apr. 2015, pp. 504–508.

[21] K. Yatabe and Y. Oikawa, “Optically visualized sound field
reconstruction using Kirchhoff–Helmholtz equation,” Acoust.
Sci. & Tech., vol. 36, no. 4, pp. 351–354, 2015.

[22] Y. Tamura, K. Yatabe, and Y. Oikawa, “Least-squares estima-
tion of sound source directivity using convex selector of a bet-
ter solution,” Acoust. Sci. & Tech., vol. 38, no. 3, pp. 128–136,
2017.

[23] T. Tachikawa, K. Yatabe, Y. Ikeda, and Y. Oikawa, “Sound
source localization based on sparse estimation and convex clus-
tering,” Proc. Meet. Acoust., vol. 29, no. 1, pp. 055004, 2016.

[24] T. Tachikawa, K. Yatabe, and Y. Oikawa, “Coherence-adjusted
monopole dictionary and convex clustering for 3D localiza-
tion of mixed near-field and far-field sources,” in IEEE Int.
Conf. Acoust., Speech, Signal Process. (ICASSP), Mar. 2017,
pp. 3191–3195.

[25] S. Kay, Modern spectral estimation: Theory and application,
Prentice Hall, New Jersey, 1988.

[26] J. Gotoh, A. Takeda, and K. Tono, “DC formulations and al-
gorithms for sparse optimization problems,” Math. Progr., Jul.
2017.

[27] D. Giacobello, M. G. Christensen, M. N. Murthi, S. H. Jensen,
and M. Moonen, “Sparse linear prediction and its applications
to speech processing,” IEEE/ACM Trans. Audio, Speech Lang.
Process., vol. 20, no. 5, pp. 1644–1657, Jul. 2012.

[28] D. Giacobello, M. G. Christensen, T. Jensen, M. Murthi, and
S. Jensen, “Stable 1-norm error minimization based linear pre-
dictors for speech modeling,” IEEE/ACM Trans. Audio, Speech
Lang. Process., vol. 22, pp. 912–922, May 2014.

[29] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends
Optim., vol. 1, no. 3, pp. 123–231, 2013.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Dis-
tributed optimization and statistical learning via the alternating
direction method of multipliers,” Found. Trends Mach. Learn.,
vol. 3, no. 1, pp. 1–122, Jan. 2011.

630


