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ABSTRACT

This papeper proposes a method of controlling the dy-
namic range compressor using sound examples. Our earlier
work showed the effectiveness of random forest regression to
map acoustic features to effect control parameters [1]. We ex-
tend this work to address the challenging task of extracting
relevant features when audio events overalp. We assess dif-
ferent audio decomposition approaches suchs as onset event
detection, NMF, and transient/stationary audio separation us-
ing ISTA and compare feature extraction strategies for each
case. Numerical and perceptual similarty tests show the util-
ity of audio decomposition as well as specific features in the
prediction of dynamic range compressor parameters.

Index Terms— Audio signal processing; Intelligent pro-
duction; Dynamic range compressor; Audio decomposition.

1. INTRODUCTION

Despite the prevalence of computers and Digital Audio Work-
stations (DAW) in music production, most audio engineering
tasks remain labour intensive and reliant on hard-to-acquire
skills. Musicians trying to produce their own tracks for in-
stance often lack experience in configuring audio effects.
This involves tweaking low-level signal processing parame-
ters given an aesthetic goal concerning some desired sound
qualities. The parameters however have limited meaning
from a musical perspective. Intelligent control tools of audio
effects therefore have the potential to democratise music pro-
duction, facilitate the learning process for beginners or enable
professionals to concentrate on aesthetic choices rather than
technical decisions.

This paper focuses on the use of sound examples to con-
trol the dynamic range compressor (DRC), an essential effect
in many audio production use cases. This modality received
little attention in the significant body of work on intelligent
audio production [2]. In our work, a set of acoustic features
are used to capture important characteristics of sound exam-
ples. These are then mapped to audio effect control parame-
ters using regression. We propose different audio decompo-
sition and feature extraction strategies to analyse and process
mono-timbral audio loops. The rest of the paper is organised
as follows. Section 2 provides the essential background. De-
tails about the decomposition methods are given in Section
3. Evaluation results are reported in Section 4, followed by
conclusion and future work outlined in Section 5.
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2. BACKGROUND

Automatic control of audio effects has become an important
topic in the fields of intelligent music production and auto-
matic mixing over the last decade. A thorough review is pro-
vided in [2], therefore we only mention a few pertinent works
here. Creating a technically correct mix through controlling
loudness balance or dynamic range of sources has become a
common task. For instance, the authors in [3] aim at finding
the optimal dynamic range for each track considering domain
knowledge gathered from audio engineers. Cartwright et. al.
[4] outline a control strategy using high-level semantic terms
such as warm or harsh, while research presented in [5] targets
new graphical interfaces.

Our work is different from previous works in that it fo-
cusses on the use of sound examples. This has not been ad-
dressed before apart from [1], where we showed the effective-
ness of Random Forest (RF) regression to model non-linear
relationships between audio features and DRC control param-
eters in the context of isolated notes. Here, we adopt our
framework to more complex audio material, mono-timbral
loops that are commonly used by producers. Loops are short
snippets of audio that can be repeated to create musical pat-
terns. Many DAWSs contain a loop library for building rich
music layers. The design of appropriate features for loops is
challenging since audio events may overlap. This makes di-
rect measurement difficult, particularly during the attack and
release phases of notes. We address this by testing different
audio decomposition and feature extraction strategies that en-
able designing features relevant to controlling DRC parame-
ters, particularly those related to ballistics, i.e., the attack and
release times (7, 7,.) of the DRC.

We choose three approaches to decompose loops. The
most straightforward method is based on onset event detec-
tion. Guidelines for choosing the appropriate detection func-
tion are provided in [6]. Time domain methods are normally
adequate for percussive signals, while spectral methods based
on spectral or phase difference are suitable for pitched instru-
ments. Complex-domain spectral difference works well but
with higher computational cost while state-of-the-art methods
using deep learning [7] are needed for polyphonic material.
Since mono-timbral loops do not have such complex struc-
ture, we opt for the simple High Frequency Content (HFC) [6]
detection function. The second approach is based on source
separation using Non-negative Matrix Factorisation (NMF) to
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decompose complex audio into activation patterns [8]. Finally
we assess transient/stationary audio separation. Researchers
used orthogonal wavelet bases in [9] while others combined
Modified Discrete Cosine Transform (MDCT) and wavelet
bases [10]. We choose a more recent work using the Iterative
Shrinkage Threshold Algorithm (ISTA) [11] for our purpose.

3. DECOMPOSITION AND FEATURE DESIGN

An overview of our method is shown in Fig.1. We aim at mak-
ing the Output audio, generated from the first Input sound
as close as possible to the second input Reference. Using
a random forest regression model we map a vector of low
level features related to each specific compressor parameter
© = {74, 7, Ratio, Thd}. The key to good performance is
designing or selecting the most relevant features.

Input—r» DRC: f(x,0) Output
‘ &
Feature
Reference—# Extraction [Model |

Fig. 1. System overview

We use standard audio features along with novel ones.
Frame-wised spectral centroid, variance and RMS are ex-
tracted and the mean and variance across the frame are used
as standard features due to their relation to dynamics. DRC
involves several stages of non-linearity and has a different be-
haviour during transient and stationary parts of sounds due to
the attack and release time parameters. We decompose loops
into simpler audio excerpts so that the attack and release
phases can be measured more accurately. Three approaches
are applied and examined including onset event detection,
NMF and transient/stationary separation using ISTA. The
decomposition methods are applied before extracting fea-
tures specific to attack time detailed in Eqn.1-3. The original
design motivations are discussed in our previous work [1].
These correspond to the length, average energy and ascending
speed of the attack phase. Ngtqrt4 and Ne,q4 represent the
start and end positions of the attack phase, which is calculated
using the RMS curve through a fixed threshold method (c.f.
[12]). Release features are calculated in a similar manner.

TA - (NendA - NstartA)/Fsv (1)
1 NendA
Al = rms_curve(n), (2)
e NendA - NstartA n:];tartA ( )
A2, = rms_curve(Nenda), 3)

3.1. Onset event detection

Using HFC we separate the onsets from a loop with the as-
sumption that it contains a note between two onsets. We then
apply feature extraction as described in Procedure 1. After
obtaining onset positions, we choose notes with attack/release
phases that have not been smeared by other notes. We choose
these using two conditions. First we select notes that are
longer than 1ms. Shorter notes normally indicate heavy over-
lap. The other condition is goodness of fit using two functions
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motivated by assumptions on note envelope. A polynomial
function fitted on the ascending part of the note envelope and
an exponential decay function on the descending part. If the
fitted parameters do not show the ascending/descending trend
the note is discarded. The procedure secures that only the
clear attack/release phases within the loops are selected. Fea-
tures are calculated according to Eqn.1-3 and averaged over
selected notes. The parameters o and 3 in Procedurel are the
start window and the forward window size respectively. We
forward the onsets to a forward window, in case the onsets
does not appear at the beginning of the transient and after-
wards we assume the start of the transient appears in the first
10% of the audio. We use a KZ filter [13] with 10 samples
window size and 5 iterations to smooth the RMS curve before
the process.

Procedure 1 Calculate designed features for mono loops.
Input:
A = Audio_Loop ; a = 10%; 3 = 0.2ms.
Output:
Ta; Algess A2q¢.
1: K = OnsetEventDetection(A)
2: k € K, K = all the onset positions in the given loop
3: for k; € K do

4. if k; — k;_1 < 1ms then

5 skip;

6: endif

7 ki = k; — 5

8: R=RMS(A[k;_1 : k;])

9:  C =KZ filter(R)

10 s =argmin(C[0 : a])

11:  p=argmax(C)

12: e =size(C)

13:  [al,bl, cl]=fit_poly(C[s : p])

14: [a2,b2, c2)=fit_exp(C[p : €])

15:  if (a1l > 0A —=b1/2al > ) V (al <O0A =bl/2al <
B)V (az/(e — p — bg) > 0) then

16: skip;

17:  end if

18: t; = TA(C), ali = Alatt(C’); a2i = A2att(C)

19: end for
200 Ty = average(t); Alqy = average(al); A2,y =
average(a2)

3.2. NMF

The second decomposition method uses spectral modelling,
i.e., Non-negative matrix factorisation. NMF (c.f. Eqn.4)
aims at decomposing the matrix V into a product of two non-
negative matrices W and H. The target matrix V is the magni-
tude spectrogram of a the audio. In our case, it is the loop to
be decomposed. The spectrogram is generated using a win-
dow size of 4096 samples and an overlap of 1024 samples.
The matrix W is the dictionary which contains C' basis vec-
tors. Meanwhile the matrix H is the activation pattern corre-
sponding to each basis vector. In this approach, we use the



activations H instead of the actual audio waveform to extract
features. Since each row of H corresponds to a specific frac-
tion of the loop, it is sparse and hence we can to retrieve the
attack/release phases.

VMXNszXC*HCXN (4)

Unsupervised NMF suffers from a common limitation
related to the dictionary recovery problem. Reasonable re-
sults can only be obtained for simple loops with only a small
amount of non-overlapping notes. Without prior knowledge
on the basis vectors, the activations may not correspond to
events we wish to characterise.

To reduce the influence of this problem, semi-supervised
NMF has been used. In the real world scenario, given a ran-
dom loop, pre-trained dictionary based on the notes within
this specific loop is not available. Therefore, we propose
an alternative instrument specific method. Recent works on
NMF based audio information retrieval methods are built
upon fixed spectral templates representing harmonic compo-
nents [14] or trained in an instrument specific manner [15].
Similarly, we use a set of twelve tone equal temperament
acoustic guitar notes from RWC [16] library as the template
set. This solution made the pre-trained dictionary sensitive to
acoustic guitar timbre as well as the widely pitch range. We
use 48 guitar notes across 3 octaves to form 4 such sets as
training data for our dictionary, i.e. w; € [w1, W2, ..., Wg],
Wi = 1/4 ij‘i Wij, with C' = 12.

This dictionary is tested and verified on different acous-
tic guitar loops from the AppleLoop' library. An example
of a loop which contains 13 notes is displayed. Its magni-
tude spectrogram is given in Fig.2(a). One dictionary element
w12 from the fixed matrix W is given in Fig.2(b) which cor-
responds to the first activation pattern from the top in Fig.2(c).
Although it is not possible to deliver perfect decomposition, it
shows significant improvement over unsupervised NMF. Sim-
ilar results are observed for other acoustic guitar loops.

The activation curves are examined to see if they have
similar response with the actual energy curves when com-
pressing the audio. The test shows positive results, since the
activation curves are essentially the responses of individual
notes. The activation patterns have a clear note-like shape
and are sparse in general. As a result, we do not need to apply
the complex selection strategies in Procedure 1, which makes
this a more stable solution. We then calculate and average
Eqn.1-3 from each activation and use the results as features.

3.3. Transient/Stationary audio separation

The final approach we propose is the decomposition of loops
into transient and stationary (7/5) parts instead of individual
notes. A state-of-the-art algorithm is proposed in [17] us-
ing Iterated Shrinkage/Threshold Algorithm framework, with

a Matlab toolbox implementation’. An improvement over

"https://support .apple.com/kb/PH13426?1locale=en_
US&viewlocale=en_US
2https://kaisiedenburg.net/research/
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Fig. 2. The spectrogram of an acoustic guitar loop (a), one of the fixed note
template (b) and its decomposed activation pattern (c), using semi-supervised
NMFE.

this using cross shrinking is proposed in [11] which provides
good results for our case. An example of the separation is
shown in Fig.3(a), 3(b). This algorithm is able to retrieve the
start and stop positions of both transients and the stationary
parts, which the transient positions can be used as Ngiqrt 4
and N.,q4 in Eqn.1-3 for attack features, and the stationary
positions can be used for release features. We then compute
features similarly to the previous cases.
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Fig. 3. The spectrogram of an acoustic guitar loop and its transient posi-
tions, using ISTA.

4. EVALUATION AND RESULTS

There are two stages of evaluation. The first is a numerical
test presented in Section 4.1. The predicted mean absolute er-
ror (MAE) of each parameter is reported when using each de-
composition methods to extract features. The second is a sim-
ilarity test using an audio similarity model discussed in Sec-
tion 4.2. Audio materials for evaluation are 29 acoustic guitar,
30 electronic bass, and 12 drum loops from AppleLoop.

4.1. Numerical test

Since this paper focuses on attack time and release time, we
generate the dataset by compressing N loops respectively to
each parameter, (0,100]ms for attack time with step of 1ms,




and (0,1000]ms for release time with step of 10ms. Therefore,
we have NV %100 compressed audio excerpts respectively. The
model is aimed at learning the difference between the Input
and the Reference, c.f. Fig.1. We form the training data by
extracting features from each compressed audio and dividing
them by the features extracted from the origins. The corre-
sponding compressor parameters are used as training target
for a random forest regression model. We use repeated ran-
dom sub-sampling validation (Monte Carlo variation) to test
the performance. 15% of each feature vectors are selected
for testing, while the remaining are used as training. It is re-
peated 100 times and the average MAE is reported in Table 1.
7, stands for attack time and 7; for release time. Std stands for
standard features, which represents the 6 high order statistical
features c.f. [1]. The following labels, Onset, NMF, and T/S,
represent the feature sets that contain both standard features
and the ones generated using the labelled method.

For test cases, the error drops when adding the decom-
position features onto standard features. NMF features pro-
vide the best performance comparing with the other individ-
ual features. However, using all features together produces
the lowest error rate. Therefore, even though NMF stands out
in this numerical evaluation, instead of choosing this specific
feature, we use all three together for a better performance.

MAE(ms) | Std Onset | NMF | T/S All
Guitar, 7, | 0934 | 0.897 | 0.845 | 0.863 | 0.807
Bass, 7, | 1449 | 1.196 | 1.071 1.244 | 0.995
Drum,t, | 1.384 | 1.361 1.194 | 1.274 | 1.134
Guitar, 7, | 12.115 | 10.604 | 10.442 | 11.802 | 9.981
Bass, 7, | 11.701 | 11.143 | 10.733 | 10.886 | 9.381
Drum, 7, | 16.327 | 14.946 | 12.714 | 13.315 | 12.043

Table 1. Predicted Mean Absolute Error(MAE) using different feature sets
for three instrument loops.

4.2. Similarity test

In the previous section, we split the dataset for training and
testing to evaluate the efficiency of the prediction model. In
a more realistic situation, the Reference and the Input should
be independent, c.f.Fig.1. In this section, we randomly se-
lected 50 pairs of audio, using one as reference and the other
one as origin. The model is able to give a predicted audio
according to these two inputs. Therefore, we can evaluate
the system by comparing D1 and D2, which represented the
similarity distance between origin and reference, and predic-
tion and reference respectively (c.f.Eqn.5). D() represents
the similarity distance measure function. Theoretically, the
distance between prediction and reference should be smaller
than the distance between input and reference.

D1 = D(Tutput, Reference); 5)

D2 = D(Onput, Reference);
We use a simple audio similarity model to test the ef-
ficiency of the system, which is also used in our earlier

research[1]. MFCC coefficients are extracted and used to fit
a Gaussian Mixture Model(GMM). An approximation of the
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symmetries KL divergence is then calculated and used as a
distance measure. The average of 50 cases are displayed in
Table2. Results show D2 are smaller than D1 for all cases,
which means our method is able to bring the Output close
to the Reference comparing with the Input. Since the actual
value of the divergence does not have practical meaning,
we normalised D2 according to D1, i.e. set D1 = 1, and
only report the normalised results. D2 indicates the distance
between the system output and the reference, therefore, the
smallest is the best.

D2s1q | D2opset Dznmf D2t/s D2,y
Guitar,, | 0918 | 0.916 0.914 0.916 | 0.916
Bass, 1, 0.384 | 0.375 0.371 0.383 | 0.362
Drum,t, | 0.251 | 0.252 0.251 0.257 | 0.252
Guitar, 7. | 0.934 | 0.936 0.940 0.919 | 0.917
Bass, 1, 0.738 | 0.732 0.726 0.733 | 0.729
Drum, 7, | 0.583 | 0.589 0.580 0.582 | 0.584

Table 2. D1 and D2 comparison using different feature sets, when D() is
the audio perceptual similarity.

The trend from the numerical test is not consistent in the
similarity test. We highlight the top two closest distance in
each cases. NMF still distinguish to the other decomposition
methods, however, the closest distance does not alway oc-
cur when using all three types decomposition methods. We
found the average similarity are close for each case when we
change the training feature sets. We then examined the predic-
tion individually. The prediction parameter values are rather
close (<1ms, c.f. Table 1), correspondingly the outputs of the
similarity model are very close. It is reasonable because we
use different decomposition method to extract same features,
they are designed to provide similar information. The differ-
ence is their efficiency and complexity. Consider the results
from both evaluation process, we can state that the most ef-
ficient decomposition method is NMF both numerically and
perceptually, while using all three we will use all three sets of
features together in the future work for better performance.

5. CONCLUSION AND FUTURE WORK

We explored three approaches of decomposing audio loops
and extracting attack/release time related features. The use
of these features have shown to be beneficial in our proposed
framework for the intelligent control of the dynamic range
compressor. The benefit is clear both in terms of the accuracy
of predicting attack and release times as well as audio simi-
larity using a simple perceptual model. Overall results show
that using all three feature sets works best numerically, while
NMF stands out in both numerical and perceptual tests.

Our future work will be focussing on adapting our method
to more complex audio materials, i.e., polyphonic tracks. The
similarity model we used for evaluation is a widely used tim-
bre similarity model. However we aim to develop models
with a stronger focus on DRC parameters, as well as con-
ducting listening tests for perceptual validation. We also aim
to compare our approach with features extacted using deep
learning techniques.
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