
IMPROVED DETECTION OF SEMI-PERCUSSIVE ONSETS IN AUDIO USING TEMPORAL
REASSIGNMENT.

Ken O’Hanlon, Mark B. Sandler

Centre for Digital Music
Queen Mary University of London

ABSTRACT

Onset detection is a fundamental task in musical signal pro-
cessing, providing information for higher level applications.
Different classes of onsets can be found in musical signals,
determined as being hard, or soft, by the initial energy trans-
fer. Most onset detectors are general purpose and attempt to
detect both classes of onsets, although some specifically at-
tempt to detect soft onsets. Temporal reassignment operators
related to group delay have previously been employed in onset
detectors for the purposes of soft onset detection and pruning
of time-frequency elements deemed to consist of vibrato. We
consider the use of temporal reassignment for the detection
of hard onsets and also employ the second mixed derivative
of phase as a means to prune the spectral energy. Experimen-
tal validation of the proposed approach is given, showing im-
provements relative to state-of-the-art general purpose onset
detectors for the specific tasks.

Index Terms— Onset detection, music, reassignment

1. INTRODUCTION

Onset detection [1] is an important task in musical signal pro-
cessing, enabling higher-level applications such as beat track-
ing [2], metric detection and modulation [3] and enhancing
piano transcription [4]. Onset detection is generally divided
into the separate tasks of hard onset and soft onset detection.
Hard onsets consider percussive and semi-percussive instru-
ments, which can be characterised by an increase in energy
due to e.g. a drum or piano string being struck. On the other
hand, soft onsets, such as might be more typical of wood-
wind or bowed string instruments may lack a sharp energy
increase, and some specialised algorithms have been devel-
oped for their detection. Many algorithms try to incorporate
elements that allow soft onset detection to be performed si-
multaneously to hard onset detection [1] [5]. Nonetheless
there may be applications in which the detection of soft onsets
is unnecessary. Audio stem formats, consisting of individ-
ual instrument tracks which allow enhanced user interactions
and remixing, are becoming more popular. Furthermore, it
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has been shown that performing music analysis tasks on such
multi-track data may improve upon processing the mixed data
[6]. We consider that a hard onset detector may be desirable.

Different approaches have been taken to the design of on-
set detectors, however most fundamentally consider the dif-
ferences between successive frames in spectrogram, or simi-
lar time-frequency representation [1]. The methods often dif-
fer by the features that are used, or measures between sub-
sequent features [2], from which an onset detection function
(ODF) is derived which is usually post-processed to estimate
the onsets. Methods based on neural networks have been pro-
posed [7], with promising results, however the same authors
also propose a more traditional onset detection method known
as superflux [5] that is generally considered state-of-the-art
for a general purpose onset detection system.

Reassigned Spectrogram [8] are one of a class of methods,
including the derivative [9] [10] and difference [11] meth-
ods that employ phase derivatives in a spectrogram to pro-
duce higher resolution in both time and frequency estimates,
thereby reassigning the energy in a spectrogram to off-grid
points. Such methods have previously been employed for
chord recognition [12] and separation of percussive and low
pitched signal elements [13]. Temporal reassignment has pre-
viously been employed for the purpose of onset detection. A
variant of the Superflux method is the complex flux algorithm
[14] which introduces a local group delay element that is used
to further ameliorate the effects of vibrato. In [15] the group
delay is employed for the detection of soft onsets, such as in
flute music. In order to detect soft onsets multi-band estima-
tion is performed. This work is expanded in [16] where the
phase slope onset detector is fused with other onset detectors.

In this paper we propose a hard onset detector. Similar to
[15] the group delay is employed to detect onset candidates,
however in the context of hard onsets the multi-band approach
employed in [15] is unnecessary. A further step is proposed
that employs the mixed second derivative of the phase in or-
der to mask the spectrogram, before using the masked spectral
energy to weight the onset candidates. In the rest of this paper
we first describe the reassignment method and onset detection
in more detail before describing the proposed onset detector.
Experimental results are then given which validate the pro-
posed approach.
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2. BACKGROUND

2.1. Reassignment Method

The spectrogram is a time-frequency representation with co-
efficients assigned to a grid with equally spaced frequency
bins and time frames. High resolution spectrograms localise
each time-frequency element to a potentially off-grid point
which may more accurately represent the energy found within
the support of the time-frequency atom. Such reassignment
can be performed both in the frequency

ω̂(ω, τ) = ω +
dφ(ω, τ)

dτ
(1)

and temporal domains

τ̂(ω, τ) = −∂φ(ω, τ)

∂ω
(2)

where φ(ω, τ) is the phase at at the point in the spectrogram
with frequency ω at time τ and ω̂(ω, τ) and τ̂(ω, τ) are the re-
assignment operators that relate the amount of reassignment
in frequency and time, respectively, at the corresponding
time-frequency point. The frequency reassignment operator
(1) can be considered a channelised version of the instanta-
neous frequency, while the temporal reassignment operator in
(2) is the group delay [17].

The reassignment operators in (1) (2) can be estimated
using different approaches. Perhaps the most well known of
these is the reassignment method [8] which derives the fre-
quency reassignment operator

∂φ(ω, τ)

dτ
= =

(
SD(ω, τ)× S∗(ω, τ)

|S(ω, τ)|2

)
(3)

where S∗ is the complex conjugate of a spectrogram, S, cal-
culated using the STFT with a given window, w, and SD is a
spectrogram for the same signal calculated using a derivative
window wD = dw(t)

dt , which can be calculated explicitly for
many windows of interest. The temporal reassignment opera-
tor is given by as

∂φ(ω, τ)

dω
= <

(
ST (ω, τ)× S∗(ω, τ)

|S(ω, τ)|2

)
(4)

where ST is a STFT calculated using a time derivative win-
dow, specified by wT (t) = w(t) × t. Other high resolution
approaches include the derivative method [10] [9], which esti-
mates the derivative of the signal rather than the window, and
the difference method [11] which calculates the differences
between time frequency bins. It has been shown previously
that such methods are equivalent to each other under certain
conditions [10] [9].

Higher order derivatives can be used to infer further infor-
mation from signals. For example the frequency slope of lin-
ear chirped elements can be estimated using the second phase

derivative with respect to time [9] [10]. The use of the second
mixed derivative ∂2φ(ω,τ)

∂τ∂ω , which we refer to here as the group
delay slope for simplicity, relates either the rate of change of
the instantaneous frequency relative to the frequency, or the
rate of change of the group delay relative to time. Similar to
(1) (2) this can be estimated [17] through the use of windows

∂2φ(ω, τ)

∂τ∂ω
= −∂τ̂(ω, τ)

∂τ
=
∂ω̂(ω, τ)

∂ω
− 1 =

<
(
STD(ω, τ)S∗(ω, τ)

|S(ω, τ)|2

)
−<

(
ST (ω, τ)SD(ω, τ)

S2(ω, τ)

)
(5)

where STD is the the spectrogram calculated using the win-
dow wTD = t× dw(t)

dt which applies the ramp function to the
derivative window, D. It is stated in [17] that for transients,
∂2φ(ω,τ)
∂τ∂ω ≈ 0, while for stationary tonal elements ∂2φ(ω,τ)

∂τ∂ω ≈
−1, as seen in Fig. 2. The use of this proposition is demon-
strated for estimating parts of the spectrogram that relate to
glottal pulses and harmonic elements of speech in [17], how-
ever it does not seem to have been previously exploited in
music processing. We employ the mixed derivative (5) here
as a part of the proposed onset detection system.

2.2. Onset detection

Onset detection is typically effected by flux methods [1] [5]
that compare subsequent time frames in a spectrogram. The
best known of these approaches is spectral flux which com-
pares frames of a magnitude spectrogram S ∈ RM×N

SF (n) = H(|S(m,n)| − |S(m,n− 1)|) (6)

where H() is the half wave rectifier function. Different vari-
ants on this approach have been employed, including different
features, such as the phase difference [1] and different dis-
tance measures [2]. More advanced versions of spectral flux
incorporate vibrato suppression methods [18] [5]. A good
overview of such variants was originally given in [1] while
a more recent compilation of features is given in [2]. Typ-
ically onset detection functions (ODF), such as SF (6) are
non-negative and are post-processed using e.g. median fil-
tering and thresholding in order to estimate the onsets [1].

A feature of particular interest here is the phase slope
function, or equivalently the temporal reassignment operator
(2), employed in [15] [16] which differs from most other func-
tions in that it is not energy based, and naturally possesses
negative and positive values. The authors of [15] describe
how, unlike most ODFs, the zero crossings in the temporal re-
assignment feature ∂φ(ω,τ)

∂ω can describe onset locations. This
is performed in multiple bands of the spectrogram, with tem-
poral smoothing and a goodness function derived for each
band, before summing to derive an onset detector function.
These choices of post-processing are made in order to capture
soft onsets. In the next section we build upon this approach,
and propose modifications and additions specifically for the
purpose of hard onset detection.
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Fig. 1. Temporal reassignment spectrogram (top) and associ-
ated GD feature (bottom)

3. PROPOSED APPROACH

We devise an onset detector that takes into account signal
properties that may be associated with (semi-) percussive
sounds. The onsets that are to be detected are generally of
a transient nature and therefore are localised in time with
a broadband spectrum, while the frequency spectrum away
from onsets should be sparse with relatively few active tonal
components. Following from this, it can be considered that
many time-frequency points in the locality of a transient
should be reassigned towards it, in a temporal sense. In this
case the phase slope, or group delay, as used in [15] should
provide a suitable feature, for the detection of such transient
hard onsets. In order to capture a smooth feature, a rela-
tively large of window of ∼ 92ms using 2048 samples at a
sampling frequency of 22.05kHz is used, with a hop size
of 220 samples, ∼ 10ms, between frames. As the onset is
considered broadband, the sum of the temporal reassignment
function calculated using (4) is taken at each time frame:

GD(τ) =

ω̄∑
ω=0

∂φ(ω, τ)

∂ω
(7)

where ω̄ is a maximum frequency, rather than using a multi-
band approach such as in [15]. Care is taken to omit spuri-
ous values of the group delay, as may be found at low energy
points of the spectrogram [17], by setting to zero elements

Fig. 2. Group delay slope spectrogram with vertical transients
and horizontal tonal elements visible

that are reassigned outside the temporal support of a win-
dow, and temporal smoothing of GD is performed by mean
filtering over immediately adjacent time frames. An exam-
ple of derivingGD from the temporal reassignment feature is
shown in Fig. 1. The feature GD is then used to assign can-
didate onsets using positively sloped zero crossings in GD,
similar to [15] which can be denoted by the set

Z = {τ |GD(τ) < 0;GD(τ + 1) > 0}. (8)

At each crossing, τ i ∈ Z, the height from the local minimum,
τ imin to the local maximum τ imax is taken

∆τ i = GD(τ imax)−GD(τ imin) (9)

However, the cumulative slope weights ∆τ , which possess no
energy characteristic, are not found to be sufficient to derive
a good onset detector, and a further weighting is applied. In
this case the group delay slope (5) is employed to define a set
of time-frequency points that are estimated to be transient in
nature, at each τ i ∈ Z which can be written as

στ i = {ω|∂
2φ(ω, τ i)

∂τ∂ω
> −0.2}. (10)

The final onset detection, W, then includes the magnitude of
the spectrogram at points in σiτ

Wτ i =
∑
στi

|S(στ i , τ
i)| ×∆τ i . (11)

Thresholding of W is subsequently performed in order to fi-
nally determine the onsets, as is typically performed in onset
detection systems [1] [5].

4. EXPERIMENTS

Onset detection experiments were performed to assess the
proposed approach, on solo piano and drum pieces. The su-
perflux [5] and complexflux [14] were run for comparison,
using the reference implementations freely available freely on
the internet. The piano dataset used was the MAPS dataset
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P R F
Superflux [5] 89.3 86.7 88.0
Complex [14] 89.6 85.5 87.5

Proposed 96.0 90.2 93.0

Table 1. Onset detection results on the EnSTDkCL dataset

[19]. Similar to [4] we use the two different datasets of live
recordings of an automatic Disklavier piano, which is gener-
ally considered to provide a reliable ground truth, although
some have noted some minor alignment issues[20]. These
two datasets are referred to as EnSTDkCl and EnSTDkAm
which where recorded with the microphone close to the pi-
ano, and in the room ambience, respectively. 30 pieces were
extracted from each dataset, with the first 30s of each piece
used for the experiments. A small subset of the ENST drum
dataset [21] is used, consisting of 27 pieces, randomly se-
lected, with a total of 2293 onsets, with a mixture of pieces
played with sticks, drums and rods.

Merging of onsets within 30ms of each other in the
ground truth is performed, as seen in [4] [5]. For all ap-
proaches a sweep of a threshold parameter applied to the
maximum value of W is performed and results relating to the
optimal threshold measure are given, similar to the approach
in [22]. A sweep over an offset parameter spaced by 5ms, as
may account for the distance to the microphone, is also taken
with optimal results given again. True positives, tp, are de-
noted when a ground truth onset is found within 50ms of an
estimated onset, while care is taken to assign each estimated
onset to only one ground truth onset, and vice versa. False
positives, fp, and false negatives, fn, are also denoted, from
which the standard Precision (P), Recall (R) and F-measure
metrics [22] are derived, which are recorded in percentage
scores.

The results for the piano datasets are seen in Tables 1 & 2
for the close and ambient recordings respectively. It is seen in
the tables that there is little difference between complexflux
and superflux for this task, as also recorded in [4], which is to
be expected perhaps, as the signals do not consist of vibrato
elements. In both cases, improvements are seen using the pro-
posed method, around 5% on the close recording and 10% for
the ambient recording. Further analysis shows that the pro-
posed method achieves F-measures of 86.3% and 83.9% for
the close and ambient recording environments when a smaller
tolerance window of 25ms is used. In particular, these re-

P R F
Superflux [5] 83.3 78.3 80.7
Complex [14] 81.2 79.4 80.3

Proposed 95.0 86.5 90.6

Table 2. Onset detection results on the EnSTDkAm dataset

P R F
SuperFlux [5] 79.6 70.1 74.6
Complex [14] 80.6 69.5 74.7

Proposed 81.8 70.0 75.4

Table 3. Onset detection results on ENST drums dataset

sults for the ambient recordings are better than those of the
flux methods using the standard 50ms tolerance. It is diffi-
cult to determine whether the difference in the improvements
with the proposed method, relative to the datasets, is due to its
ability to deal with the ambient environment, or it may be that
the high results for the flux methods in the case of the close
recordings leave little room for improvement. Conversely, lit-
tle difference is in seen the results for the drums dataset, as
can be seen in Table 3, where the proposed method is seen
to perform only slightly better than the previous approaches.
It was observed, in these experiments, that the F-measures
for the pieces using drumsticks were higher than those on the
piano datasets, while results on pieces using rods or brushes
with less localised onsets were lower.

It would seem that the proposed approach is useful in
the specific scenarios described. Although not reported here,
other variants incorporating the group delay slope were ex-
perimented with, such as a version of spectral flux with mask-
ing based upon the group delay slope, and a version in which
the weighting, ∆{tau, was not employed. However, none of
these other variants seemed to improve upon the flux meth-
ods used for comparison. It would seem that using the (group
delay slope masked) energy at a given point is best. Possibly
this is due to its effect of penalising lower energy reverber-
ation that may be detected as candidate onsets, which may
have a similar shape in terms of the group delay feature.

5. CONCLUSIONS

We have proposed a novel onset detector for the purpose of
hard onset detection. Experimental validation shows that,
for such a purpose, the proposed approach outperforms the
state-of-the-art general purpose onset detection methods.
Meanwhile the usefulness of the group delay slope has been
demonstrated. We believe that the proposed system will ex-
tend to other semi-percussive instruments. Future work will
include experimenting with other types of data, exploring
performance in presence of other sounds. Different window
sizes, or possibly multi-scale approaches, might be explored
in order to try to enhance the temporal tolerance of the ap-
proach, while other high resolution approaches, such as the
derivative and difference methods should also be compared
for this type of application. Such an onset detector may also
be used in a piano transcription system such as [4].

614



6. REFERENCES

[1] J. P. Bello, L. Daudet, S. Abdallah, C. Duxbury,
M. Davies, and M. B. Sandler, “A tutorial on onset de-
tection in music signals,” IEEE Transactions on Speech
and Audio Processing, vol. 13, no. 5, pp. 1035–1047,
Sept 2005.

[2] “Multi-feature beat tracking,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 22,
no. 4, pp. 816–825, April 2014.

[3] E. Quinton, K. O’Hanlon, S. Dixon, and Mark B. San-
dler, “Tracking metrical structure changes with sparse-
NMF,” in IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2017.

[4] J. J. Valero-Mas, E. Benetos, and J. M. Inesta, “Assess-
ing the relevance of onset information for note tracking
in piano music transcription,” in 2017 AES International
Conference on Semantic Audio, 2017.

[5] S. Bock and G. Widmer, “Maximum filter vibrato sup-
pression for onset detection,” in Proceedings of the
16 International Conference on Digital Audio Effects
(DaFX), 2013.

[6] S. Hargreaves, A. Klapuri, and M. Sandler, “Structural
segmentation of multitrack audio,” IEEE Transactions
on Audio, Speech, and Language Processing, vol. 20,
no. 10, pp. 2637–2647, Dec 2012.

[7] F. Eyben, S. Bock, B. Schuller, and A. Graves, “Uni-
versal onset detection with bidirectional long short-term
memory neural networks,” in Proceedings of 11th Inter-
national Society for Music Information Retrieval Con-
ference (ISMIR), 2010.

[8] F. Auger and P. Flandrin, “Improving the readability of
time-frequency and time-scale representations by the re-
assignment method,” IEEE Transactions on Signal Pro-
cessing, vol. 43, no. 5, pp. 1068–1089, May 1995.

[9] B.Hamilton, P. Depalle, and S. Marchand, “Theoretical
and practical comparisons of the reassignment method
and the derivative method for the estimation of the fre-
quency slope.,” in Proceedings of the IEEE Workshop on
Applications of Signal Processing to Audio and Acous-
tics, 2009, pp. 345–348.

[10] X. Wen and M. B. Sandler, “Notes on model-based non-
stationary sinusoid estimation methods using deriva-
tives,” in Proceedings of the 12th Int. Conference on
Digital Audio Effects, 2009.

[11] S. Marchand, “The simplest analysis method for non-
stationary sinusoidal modeling,” in Proceedings of the
15th International Conference on Digital Audio Effects
(DAFx), 2012, 2012.

[12] M. Khadkevich and M. Omologo, “Time-frequency
reassigned features for automatic chord recognition,”
in 2011 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2011, pp. 181–
184.

[13] P. Smaragdis and M. Kim, “Non-negative matrix factor-
ization for irregularly-spaced transforms,” in 2013 IEEE
Workshop on Applications of Signal Processing to Audio
and Acoustics, 2013, pp. 1–4.

[14] S. Bock and G. Widmer, “Local group delay based
vibrato and tremolo suppression for onset detection,”
in Proceedings of ISMIR - International Conference on
Music Information Retrieval (ISMIR), 2013.

[15] A. Holzapfel and Y. Stylianou, “Beat tracking using
group delay based onset detection,” in Proceedings of
ISMIR - International Conference on Music Information
Retrieval, 2008, pp. 653–658.

[16] A. Holzapfel, Y. Stylianou, A. C. Gedik, and B. Bozkurt,
“Three dimensions of pitched instrument onset detec-
tion,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 18, no. 6, pp. 1517–1527, 2010.

[17] K. R. Fitz and S. A. Fulop, “A unified theory of time-
frequency reassignment,” CoRR, vol. abs/0903.3080,
December 2009.

[18] N. Collins, “Using a pitch detector for onset detection,”
in International Conference on Music Information Re-
trieval (ISMIR), 2005.

[19] V. Emiya, R. Badeau, and B. David, “Multipitch esti-
mation of piano sounds using a new probabilistic spec-
tral smoothness principle,” IEEE Transactions on Au-
dio, Speech, and Language Processing, vol. 18, no. 6,
pp. 1643–1654, August 2010.

[20] A. Cogliati, Z. Duan, and B. Wohlberg, “Context-
dependent piano music transcription with convolutional
sparse coding,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 24, no. 12, pp.
2218–2230, Dec 2016.

[21] “Enst-drums: an extensive audio-visual database for
drum signals processing,” in Proceedings of ISMIR - In-
ternational Conference on Music Information Retrieval
(ISMIR), 2006.

[22] K. O’Hanlon and M. B. Sandler, “An iterative hard
thresholding approach to `0 sparse hellinger nmf,”
in 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2016, pp.
4737–4741.

615


