
THE DIMENSIONS OF PERCEPTUAL QUALITY OF SOUND SOURCE SEPARATION

Estefanı́a Cano†, Judith Liebetrau†, Derry Fitzgerald ‡, Karlheinz Brandenburg†

†Fraunhofer IDMT, Germany
‡ Cork Institute of Technology, Ireland

ABSTRACT

Quality of sound source separation algorithms has tradition-
ally been evaluated based on a set of established quality met-
rics: target distortion, interference from other sources, arti-
facts distortion, and a measure of overall separation quality.
In our previous work, listening test results were presented
where no significant correlation between these quality met-
rics and perceptual ratings from the listening test could be
observed. Following these results, we now attempt to bet-
ter understand perceptual quality in a sound source separa-
tion context. We focus on determining how separation quality
is actually defined by listeners and propose the use of a de-
scriptive methodology to reveal its most relevant dimensions.
A combination of Free-Choice Profiling and Repertory Grid
Technique is used with 10 human listeners in an attempt to
verify if the main dimensions of separation quality truly cor-
respond to those established by the quality metrics. The out-
comes of this exploration bring light to the development of
new methodologies for sound separation quality evaluation,
and suggest a two-dimensional perceptual space for quality
of sound source separation.

Index Terms— Sound Source Separation, Quality Per-
ception, Quality Metrics, Listening Tests, Repertory Grid

1. INTRODUCTION

The first established procedure for sound source separation
(SSS) quality evaluation was proposed in [1]. In this work,
a set of performance metrics known in the literature as BSS,
are obtained by decomposing the separated source into three
types of distortions: interference from unwanted sources, ad-
ditive noise, and algorithm artifacts. Based on this decompo-
sition, energy ratios between the signal components are used
to define a global quality measure and three quality measures
related to the error terms; namely, Source to Distortion Ratio
(SDR), Source to Interference Ratio (SIR), Source to Noise
Ratio (SNR), and Source to Artifacts Ratio (SAR), respec-
tively. These metrics are expressed in dBs.

In an attempt to incorporate perceptual information into
the evaluation process, the PEASS Toolkit –Perceptual Eval-
uation Methods for Audio Source Separation– was later pro-
posed in [2]. In this work, three types of signal distortions

were considered: target, interference, and artifact distor-
tions. Perceptual ratings obtained via listening tests were then
mapped into objective scores calculated using the PEMO-Q
auditory model by means of a non-linear function. Simi-
larly to BSS, four quality measures were proposed; namely,
Overall Perceptual Score (OPS), Target-related Perceptual
Score (TPS), Interference-related Perceptual Score (IPS), and
Artifacts-related Perceptual Score (APS).

While the availability of quality measures such as BSS
and PEASS reduced the efforts of performing listening tests
to the calculation of quality metrics, the separation commu-
nity soon realized that numerical results obtained with the
metrics did not necessarily match perceptual quality ratings
from human listeners. In an attempt to better understand this
matter, we presented in [3] the results from a series of listen-
ing tests that quantified the quality perception of several SSS
algorithms. In the listening tests, besides the overall quality,
the interference, artifact and target distortion were assessed
by applying a multi-stimulus comparison according to ITU-R
BS.1534-3 [4]. A correlation analysis was then performed,
showing that the scores obtained via BSS and PEASS were
not indicative of the scores obtained via the listening tests.
These results indicated that existing metrics do not general-
ize well to all separation algorithms and hence, might not be
suitable for SSS quality evaluation. Similar results have been
observed in the context of speaker separation in multi-source
reverberant environment [5], and singing voice separation [6].

It has now become clear in the SSS community that the
development of robust quality metrics and quality evaluation
procedures is of great importance. Some initial explorations
into the development of alternative procedures have been pre-
sented in [7, 8]. In this paper, we investigate the perceptual
dimensions of SSS quality by looking into sound perception
as a multi-dimensional problem that includes several individ-
ual attributes [9]. We aim at the identification and determi-
nation of these individual attributes and at a generalization of
these attributes in the context of SSS.

2. DESCRIPTIVE ATTRIBUTE GENERATION

There are several methods for generating descriptive at-
tributes (see [10] for a comprehensive overview). In general,
two types of methods are distinguishable: consensus and in-
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dividual vocabulary techniques. With consensus vocabulary,
a group of assessors (participants) develops a descriptive lan-
guage and rating scales which are used in grading sessions.
The consensus vocabulary procedure requires training of the
panel members (expert listeners), as well as group discussions
and consensus. In contrast, individual vocabulary techniques
enable assessors to develop their own vocabulary. No train-
ing or group discussion is required, and it is applicable to
experts and non-expert listeners alike. However, the anal-
ysis and interpretation of the individual vocabulary and its
transformation to a common perceptual description is more
complex compared to the consensus vocabulary techniques
[11, p.160].

Methods like Free-Choice Profiling (FCP) or Repertory
Grid Technique (RGT) are examples of individual vocabulary
techniques. FCP was originally developed in food research,
and was later adopted for multi-modal assessment [12]. First,
the assessors define their own attributes to describe their per-
ception. The assessors then evaluate all stimuli with their own
adjective scales which are labeled with the attributes devel-
oped by each assesor. Due to the usage of individual vo-
cabulary for each assessor a common perceptual space has
to be calculated. RGT was originally proposed for analysis
of personal constructs in psychotherapy [13]. Assessors com-
pare triads of stimuli and describe the way two of the stimuli
are similar and different from the third one (triadic elicitation
procedure). As long as the assessor is able to give new de-
scriptions for commonalities and differences of stimuli, this
process continues. Based on the collected descriptors, an in-
dividual grid is constructed out of opposing terms and used
in the grading phase. In recent years, this method has been
applied to audio assessment (e.g., [14]). A drawback of the
triadic elicitation procedure is that differences between two
sound stimuli might be obscured if they are always presented
with a more dissimilar sound. In the attempt to reduce the ef-
fects of construct masking, a modification of RGT with pair-
wise presentation of stimuli was proposed in [15]. Despite of
the benefits in using individual vocabulary, assessors some-
times have difficulties describing their perception in the FCP
procedures. In [16], a structured free-choice procedure, based
on the philosophy of the RGT was proposed to help the asses-
sors concentrate and focus on the development of descriptive
attributes. We use this technique for the analysis conducted
in this work.

3. METHODOLOGY

Building on our previous work, we used a selection of three
tracks (items) from the data set used in [3]. A total of four
harmonic-percussive (HP) algorithms were considered: Alg1
[17] and Alg2 [18], as used in our previous work, and Alg3
[19] and Alg4 [20] which were included for the attribute elici-
tation stage to obtain descriptors general to a diversity of sepa-
ration algorithms. Two separate stimuli sets were constructed

using the three chosen items: one set for the attribute elicita-
tion (AESet), and one set for the grading procedure (GPSet).
The AESet included the original mix from the multi-track
recordings (also referred to as mix in the remainder of the pa-
per), the original harmonic track of the multi-track recording
(also referred to as harm in the remainder of the paper), and
the harmonic signals extracted with the four HP algorithms.
The GPSet consists of the harmonic signals extracted with
Alg1 and Alg2 (to allow direct comparison with our previous
work), and the harmonic track of the multi-track recordings.

Following recommendations in [21], ten people (three fe-
male, seven male), all employees or students at Fraunhofer
IDMT, participated in the test. Most had a musical back-
ground, while only two had previous knowledge concerning
SSS and quality metrics.

The test procedure consisted of two parts, conducted
back-to-back: (1) vocabulary generation and (2) grading.
A graphical user interface (GUI) was implemented for all
assessment tasks. Although the GUI guided the assessors
through the evaluation, a test supervisor was always present
to assist the participants. For the vocabulary generation, the
assessors were first presented with the original mixes of the
three selected items. Each assessor was asked to choose
his/her favorite one, which was then used in the remainder
of the vocabulary generation stage. The assessors were then
presented with the harm version of the chosen item, and the
four harmonic signals obtained with the four separation algo-
rithms (presented in random order). Given that HP separation
algorithms aim at producing harm as its outcome (target
source), harm was always highlighted as the reference. The
assessors were then asked to do pair-wise comparisons be-
tween the reference and each of the four separated versions
(in any order). For each comparison, the assessors were asked
to characterize the perception of differences and similarities
between the two tracks. They were encouraged to use a noun
or adjective to characterize their perception but were also
allowed to use phrases. The comparisons were conducted
until each assessor produced a minimum of six descriptors;
however, freedom was given to produce more than six.

In the grading stage, the goal was to rate the GPSet with
the attributes developed in the first stage. Each test stimulus
(the harmonic signals obtained with Alg1 and Alg2 for the
three test items and their original harm versions) was played
back to the assessors, who then rated them in a 100-point scale
with respect to each of the generated descriptors. The partici-
pants could listen each test stimulus as often as required.

4. RESULTS OF THE PERCEPTUAL EVALUATION

A total of 93 individual attributes were developed, vary-
ing between six and 12 attributes per assessor. The multi-
dimensional rating spaces of each assessor were mapped to a
common perceptual space using a Multiple Factor Analysis
(MFA) [22]. Each dimension (Dim) in the common per-
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Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 Dim 6 Dim 7 Dim 8
38.7 % 16 % 13.6 % 10.2 % 6.8 % 5.8 % 4.7 % 4.2 %

Table 1. MFA: Explained variance per dimension (Dim)

ceptual space explains a certain amount of the variance in
the data. In this case, an 8-dimensional common perceptual
space was found as shown in Table 1. The significance of
the MFA model was investigated by comparing the explained
variance of the GPSet (using the first three dimensions), to the
explained variance of random data (derived through Monte-
Carlo simulation and permutation of the original data with
1000 repetitions) [23]. The explained variance of the investi-
gated data set (68.3 %) is higher than the 95th percentile from
the variance distribution of the simulated data sets (67.7 %).

To identify the number of meaningful dimensions in
the common perceptual space, four methods, were applied;
namely, (1) Acceleration Factor, (2) Optimal Coordinate,
(3) Parallel Analysis, and the (4) Kaiser Criterion [24, 25].
As it is often the case, no common solution was found be-
tween methods: Acceleration Factor resulted in a 1-D space,
Optimal Coordinate and Parallel Analysis suggested 3 dimen-
sions, while the Kaiser criterion resulted in 6 dimensions.

Given that the number of retained dimensions cannot only
rely on these indices, the interpretability of the dimensions
must also be considered. To interpret the meaning of the di-
mensions, only well-projected attributes with cos2≥ 0.5 and
high correlation (r≥ |0.7|) were taken into account [26]. For
Dim 1, 32 attributes fulfilled these criteria, for Dim 2 seven
attributes, for Dim 3 three attributes, for Dim 4 one attribute,
and for Dim 5 two attributes. The retained attributes sug-
gest three categories of descriptors: a) describing general au-
dio quality (e.g., pleasing, unpleasing, annoying), b) describ-
ing the degree of interference (e.g., filled up, reduced, im-
mersive), and c) describing distortions (e.g., distorted instru-
ments, disturbing because no continuous loudness, bad cod-
ing, metallic and unnatural). However, based on the attributes
themselves, a unique descriptor that represents each dimen-
sion could not be defined.

To further analyze the descriptors, we calculated and visu-
alized how the presented stimuli (GPSet) are placed in the per-
ceptual space, specifically in 2-D representations of the per-
ceptual space. As a general reference, stimuli placed closer
together are perceived as similar. Figure 1 displays the posi-
tion of the stimuli in three subspaces: Dim 1 - Dim 2, Dim 2 -
Dim 3, and Dim 3 - Dim 4. We used different colors and sym-
bols to highlight the affiliation of the stimuli to either a con-
dition (Alg1 �, Alg24, harm ◦), or to a test item (i1, i2, i3).

In the Dim 1 - Dim 2 subspace (Fig.1 left), it is clear that
the three stimuli processed with Alg1 are perceived as simi-
lar, as well as the items processed with Alg2, and the original
harm. A clear distinction between the algorithms is visible
regardless of the type of audio content (item): Alg1 is placed
more to the left side of Dim 1, Alg2 in the middle, and harm to

the right of the axis. There is no overlap between the stimuli
groups along Dim 1, therefore it is assumed that these groups
are perceived very differently with respect to this dimension.
A slight overlap of Alg1 and harm can be observed along
Dim 2, which indicates a similar perception of these groups
with respect to this dimension.

The same analysis was performed for the Dim 2 - Dim 3,
Dim 3 - Dim 4, and Dim 4 - Dim 5 subspaces. For the Dim 2 -
Dim 3 subspace, it appears that both the algorithms and the
item type play an important role. In Fig.1- center, no clear
separation between the algorithms can be seen with respect to
Dim 3. For the Dim 3 - Dim 4 subspace, no clear distinction
between the algorithms could be observed; however, the item
type seems to play an important role in this subspace. As can
be seen Fig.1- right, stimuli derived from item 1 (Alg1, Alg2
and harm) are placed in the second quadrant, stimuli belong-
ing to item 2 are placed in the third quadrant, whereas those
associated with item 3 are placed in the first and fourth quad-
rants. This indicates that a characterization of the item type
and not algorithm quality differences is obtained here. The
Dim 4 - Dim 5 subspace was investigated in the same manner,
leading to similar results as with Dim 3 - Dim 4. These ob-
servations lead to the conclusion that only Dim 1 and Dim 2
describe the quality perception caused by properties of the al-
gorithms, while higher dimensions seem to characterize dif-
ferences between test items.

After defining the perceptual space as a two-dimensional
one, the interpretation of these dimensions needs to be fur-
ther explored. The starting point of our investigation were lis-
tening tests in which besides the overall quality, the interfer-
ence, artifact and target distortions were assessed by applying
a multi-stimulus comparison according to ITU-R BS.1534-3
[3]. In theory, target, interferences, and artifacts are inde-
pendent dimensions of quality in a sound source separation
context. Consequently, the mean opinion scores (MOS) for
each stimulus represent their spatial distribution along the re-
spective dimension. This allows us to perform a correlation
analysis between the MOS in [3], and the first two dimen-
sions of the common perceptual space derived in this work.
In Table 2 the Pearson correlation coefficient r is displayed.

For Dim 1 a high correlation value can be observed with
the MOS of the interference. Dim 1 is only moderately cor-
related to overall quality (but not significant), and no strong
correlations can be observed with artifacts and target. Dim 2
has a strong linear correlation with overall quality but an even
higher r value for target distortions and artifacts distortions.
These results suggest that Dim 1 in the common perceptual
space describes the degree of separation or the amount of
interference from other sources. These results also indicate
that Dim 2 encompasses all types of distortions, resulting in
a strong relation to the overall audio quality. Based on this
interpretation, Figure 1-left could be analyzed in more detail.
The harm stimuli have a high overall quality and low of in-
terference from other sources. Alg1 seems to result in good
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Fig. 1. Positioning of the stimuli in the Dim 1 - Dim 2 (left), Dim 2 - Dim 3 (center), and Dim 3 - Dim 4 (right) subspaces. In the
left and center plots the following marker convention is used: � Alg1, 4 Alg2, and ◦ harm. Item numbers are shown as i1, i2,
and i3. In the plot in the right, the markers are used to indicate items as follows: � item 1, 4 item 2, and ◦ item3, with the
algorithms and harm displayed next to each marker. The mean value of each group is displayed with a rectangle.

overall quality but with higher amount of interference from
other sources. Alg2 seems to result in lower overall quality
but in less interference from other sources compared to Alg1.

Dim 1 Dim 2
Overall r = 0.58, p = 0.1028 r = 0.77, p = 0.015
Artifact r = 0.21, p = 0.5893 r = 0.93, p = 0.0003

Interference r = 0.83, p = 0.0061 r = 0.34, p = 0.3775
Target r = 0.21, p = 0.5818 r = 0.91, p = 0.0005

Table 2. Pearson correlation coefficient r and p values be-
tween the MOS for overall quality, interference, artifact and
target distortion from [3], and the spatial coordinates of Dim 1
and Dim 2 of the common perceptual space.

5. CONCLUSIONS

This study focused on how human listeners define SSS qual-
ity. Using a descriptive methodology combining FCP and
RGT, the study showed that participants were successful in
labelling and rating their perceptions of separation quality, al-
lowing the creation of a common perceptual space which had
high explained variances. The two most important dimen-
sions relate to perceived separation quality, accounting for the
majority of the variance in the space. The other dimensions
appeared related to differences between the test items.

The first dimension was strongly correlated with the MOS
for interference. The second dimension correlated strongly
with the overall MOS score and was even more correlated
with both the artifact and target MOS scores. The key point
is that, at least with respect to the HP algorithms tested, in-
terference from other sources was the dominant perceptual
attribute for good quality separation, while both artifact and
target distortions (and to a lesser extent, overall quality) were
grouped together under one perceptual feature. This suggests

that four quality metrics (as traditionally done in SSS) are not
necessary, and that a properly defined set of two distortions is
sufficient to capture the variance related to separation quality.

While these results highlight problems with existing pro-
cedures for assessing SSS quality, with respect to both exist-
ing metrics and distortion-based listening tests, there is a need
for further study and research on this topic. In particular, these
results were obtained using HP algorithms only, and there is
a need to generalize this to other separation tasks. This will
require larger scale tests, with increased numbers of partici-
pants and a larger choice of test items in the grading stage of
the tests. It will also require MOS scores for distortions for
these test items. Future work will therefore focus on extend-
ing the range and validity of the results obtained herein.
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