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ABSTRACT
There is some uncertainty as to whether objective metrics for
predicting the perceived quality of audio source separation are
sufficiently accurate. This issue was investigated by employ-
ing a revised experimental methodology to collect subjective
ratings of sound quality and interference of singing-voice
recordings that have been extracted from musical mixtures
using state-of-the-art audio source separation. A correlation
analysis between the experimental data and the measures of
two objective evaluation toolkits, BSS Eval and PEASS, was
performed to assess their performance. The artifacts-related
perceptual score of the PEASS toolkit had the strongest cor-
relation with the perception of artifacts and distortions caused
by singing-voice separation. Both the source-to-interference
ratio of BSS Eval and the interference-related perceptual
score of PEASS showed comparable correlations with the
human ratings of interference.

Index Terms— Audio quality assessment, subjective
evaluation, source separation

1. INTRODUCTION

High-quality separation of the singing voice from accompa-
nying instruments is an important yet difficult task serving
many applications, from remixing and upmixing music [1] to
increasing vocal intelligibility for the hearing impaired [2].
Unfortunately, source separation introduces distortions and
artifacts, consequently degrading the sound quality of the ex-
tracted source. A second issue is interference, whereby the
unwanted sources remain present to some extent. It would
therefore be useful to know how well source separation tech-
niques are suited to a given application. This requires percep-
tual evaluation where experienced listeners judge real systems
according to different perceptual attributes. An alternative is
to employ objective metrics which have been developed to
predict human perception. The purpose of this paper is to
assess the performance of two predictors of audio source sep-
aration quality: BSS Eval [3] and PEASS [4].
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1.1. Previous work

The Blind Source Separation Evaluation (BSS Eval) toolkit
[3, 5] decomposes the error between the target source and the
extracted source into a target distortion component reflecting
spatial or filtering errors, an artifacts component pertaining
to artificial noise, and an interference component associated
with the unwanted sources. The salience of these compo-
nents is quantified using three energy ratios: source Image-
to-Spatial distortion Ratio (ISR), Source-to-Artifacts Ratio
(SAR), and Source-to-Interference Ratio (SIR). A fourth
metric, the Source-to-Distortion Ratio (SDR), measures the
global quality (all impairments combined).

A perceptually-motivated adaptation of this toolkit is
PEASS (Perceptual Evaluation method for Audio Source
Separation) [4, 6], which estimates the three distortion com-
ponents from auditory representations of the reference and
extracted sources, which are then input to the PEMO-Q au-
ditory model [7] to measure their salience. In the final stage,
a neural-network trained on human data combines the re-
sulting component-wise salience features into four objective
predictors: Target-related Perceptual Score (TPS), Artifacts-
related Perceptual Score (APS), Interference-related Percep-
tual Score (IPS), and Overall Perceptual Score (OPS). The
subjective data were obtained from a “MUlti-Stimulus test
with Hidden Reference and Anchor” (MUSHRA) [8] listen-
ing assessment in which listeners were asked to rate target
preservation, absence of artificial noises, suppression of other
sources, and overall quality of 10 audio excerpts (primary
speech/singing voice) estimated using 13 source separation
algorithms. Vincent [6] later revised the model parameters to
increase the correlation with the mean opinion scores of the
same subjective data.

Despite the development of evaluation toolkits, there is
some conflicting and inconclusive evidence as to their per-
ceptual relevance. For example, Cano et al. [9] performed
a correlation analysis to compare the measures of BSS Eval
and PEASS with the mean opinion scores obtained from a
MUSHRA experiment. They asked the same four questions
as Emiya et al. [4], but used musical sounds as estimated by
two harmonic-percussive separation algorithms. An across-
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song correlation between the subjective scores and objective
values showed that PEASS performed slightly better than
BSS Eval, but that the correlations were weak and incon-
sistent across the two separation algorithms, indicating poor
generalisation to other sources and types of algorithms.

Gupta et al. [10] conducted an experiment in which lis-
teners were asked to rate the overall quality, interference, and
intelligibility of vocal and accompaniment excerpts extracted
by four singing-voice separation algorithms from nine songs.
A correlation analysis was performed between each partici-
pant’s rating and the BSS Eval measures, but the effect sizes
were not consistently high, with wide confidence intervals.
The authors concluded that SIR and SAR provided some in-
dication of the perceived vocal isolation and intelligibility, re-
spectively, and that overall quality correlations were generally
poor. Cartwight et al. [11] repeated the original PEASS ex-
periment [4], and found consistent positive correlations for
all four BSS Eval statistics (PEASS was not assessed), with
the highest being around 0.75 for SIR (interference) and 0.55
for SAR (artificial noise). Finally, Simpson et al. [12] asked
listeners to rate the overall similarity of 10 vocal segments,
whilst ignoring the accompaniment, extracted by five algo-
rithms against the original source. They carried out a sec-
ond experiment in which listeners judged the amount of in-
terference indirectly by rating the similarity of the vocal-to-
accompaniment loudness ratio to that of the original mixture.
Simpson et al. reported high within-song Pearson correlations
of around 0.91 for both SAR (similarity) and SIR (interfer-
ence). Their correlations were, however, likely inflated by
including the original mixture in the objective measurement,
as this stimulus is often an outlier, especially in terms of SAR.

1.2. This work

The previous studies suggest that there is an association
between the BSS Eval measures and perceptual charac-
teristics of source separation algorithms when applied to
speech/singing voice, but that the strength of these relation-
ships depends on the perceptual attribute that listeners are
asked to judge when rating different systems. Furthermore,
the predictive success of PEASS when applied to new sub-
jective data remains unknown. The present work investigates
these issues by assessing both toolkits in terms of predicting
sound quality and interference of singing voices extracted
from musical mixtures. A revised experiment design is pre-
sented whereby the sound-quality rating scale is modified
to better assess the influence of distortions and artifacts on
perceived quality, independently of interference. In contrast
to previous work, a broader sample of source separation al-
gorithms (21) and mixtures (16) have been collated to better
assess the generalisation of these metrics.

2. SUBJECTIVE ASSESSMENT

In previous MUSHRA assessments [4, 9, 11], listeners rated
the quality of each test sound compared to a reference sound
(the original isolated source) in terms of global quality (all im-
pairments combined), preservation of the target source, sup-
pression of other sources, and absence of additional artificial
noise. However, in our previous experiment [13], listeners
found it difficult to separate specific distortions when audi-
tioning the output of real systems, which agrees with the post-
hoc observations of Emiya et al. [4] and Cartwright et al. [11].
We therefore simplified the task by asking listeners to assess
stimuli according to two criteria: Sound quality relates to
the amount of artifacts and distortions that you can perceive,
ranging from worse quality to same quality, with respect to
the reference sound; Interference describes the loudness of
the instruments compared to the loudness of the vocals, rang-
ing from strong interference to no interference. Training ex-
amples were used to emphasize that sound quality focuses on
general distortions and not the presence of accompanying in-
struments. Similar examples were presented to explain that
interference should be judged independently of such distor-
tions. The perception of global quality [4], and thus the evalu-
ation of all-encompassing performance metrics like SDR and
OPS, is the subject of future work.

2.1. Procedure

Our test interface was based on MUSHRA [8]. The listener
clicked a ‘reference’ button to audition a reference singing
voice, and clicked and dragged sliders to play and rate eight
test sounds on a scale from 0–100, respectively.1 Unlike
MUSHRA, the scores were hidden from the listener and only
the end points of the scale were labelled. These modifica-
tions were made to reduce potential bias effects introduced
by verbal labels [14].

Participants were asked to rate the sound quality and per-
ceived interference of eight test sounds in comparison to a
reference. Sixteen vocals, each from a different song, were
used, with one excerpt randomly selected (for each listener
and task) as a replicate, resulting in 17 trials per task. The
replication allowed for the measurement of intra-rater agree-
ment and facilitated post-screening of participants. Both the
order of the trials and the order of the test sounds within trial
was random, and task order was counterbalanced across par-
ticipants. Project resources can be found on the GitHub repos-
itory associated with the online assessment.2

2.2. Stimuli

Eight test sounds were used per trial: a hidden reference (the
original vocal excerpt), two hidden anchors, and five vocals

1The interface was developed using https://github.com/deeuu/listen
2https://cvssp.github.io/perceptual-study-source-separation/

597



extracted from the mixture by five different source separa-
tion algorithms. The reference vocals were taken from the
Demixing Secret Database [15], a set of 100 rock and pop
songs each comprising four sources: bass, drums, vocals
(lead and backing), and ‘other’. This database was com-
piled to assess 23 source separation algorithms competing in
the 2016 Signal Separation Evaluation Campaign (SiSEC16)
[15], from which the submitted audio files were kindly pro-
vided by Fabian-Robert Stöter. We selected 16 songs and five
different algorithms per song, using a sampling procedure
which achieves a range of distortions and interference levels
according to SAR and SIR [13]. The resulting stimuli com-
prised vocals estimated by 21 source separation algorithms.

In the MUSHRA protocol, low-quality anchors are test
sounds that have been included (unbeknownst to the listener)
to represent large impairments. In previous work [13] we
found the artifacts and target distortion anchors defined by
Emiya et al. [4] to be of higher quality than the worst per-
forming algorithms of SiSEC16. We therefore modified their
specifications to establish a more appropriate anchor for the
sound-quality task. The sound-quality anchor was generated
by removing 20% of the time frames from the spectrogram of
the reference and lowpass filtering it with a cutoff frequency
of 3.5 kHz. Musical noise was then created by randomly re-
moving 99% of the time-frequency bins from a second spec-
trogram before applying the same lowpass filter. The inverse
of these two spectrograms were loudness normalized accord-
ing to ITU-R BS.1770 [16] and then summed. The original
mixture associated with each reference vocal was used as the
interference anchor. All stimuli were shortened to seven sec-
onds, converted to mono, and then loudness normalized [16].

2.3. Participants

The listening assessment involved 24 listeners, 18 of which
were assessed in an audio booth at CVSSP, and six expe-
rienced listeners completed the test online. Of the 24 par-
ticipants, three were female and 21 were male, and all were
aged between 21 and 41, with no known hearing impairments.
Stimuli were reproduced over headphones.

3. ANALYSIS AND RESULTS

Each participant’s per-trial ratings were min-max scaled such
that the sound with the lowest rating was equal to zero and the
sound with the highest rating was equal to 100 [8]. In what
follows, median (second quartile) values are supplemented
with measures of spread using the interquartile range (IQR)
which is the difference between the third and first quartile.

3.1. Descriptive analysis

Intra-rater agreement was evaluated using the concordance
correlation coefficient [17], which ranges between -1 (per-
fect negative agreement) and 1 (perfect agreement), applied

Sound quality Interference Reference

0

20

40

60

80

100

R
at

in
g

Task
Sound quality
Interference

Fig. 1. Bee swarm plot of all ratings assigned to the hidden
sound-quality and interference anchors, and the hidden refer-
ence in each task.

to the paired scores obtained from the replicated trials. The
three hidden stimuli were removed to measure agreement on
the systems under test only. The median of the 24 partici-
pant correlations was 0.79 (IQR = 0.39) for the sound-quality
task, and 0.82 (IQR = 0.21) for the interference task. Al-
though the magnitude of the two coefficients are comparable,
the between-listener spread is roughly twice as large for the
sound-quality task.

Fig. 1 shows all ratings assigned to the two hidden an-
chors and the hidden reference in each task. Ratings close to
zero were expected for the sound-quality anchor in the qual-
ity task and for the interference anchor in interference task as
these anchors were designed to emphasize low-quality degra-
dations beyond those exhibited by real systems. It can be seen
that listener agreement is highest when judging each anchor in
its associated task. However, listeners were less certain when
judging the interference present in the sound-quality anchor,
which suggests that they were uncomfortable assigning ‘no
interference’ to artificial musical noise. The figure also high-
lights that the majority of listeners were able to identify the
hidden references.

Following Gupta et al. [10], inter-rater agreement was
measured using Krippendorff’s α [18], which ranges from
0 (absence of reliability) to 1 (perfect reliability). With the
three hidden stimuli excluded, the across-song median α was
0.34 (IQR = 0.12) for the sound-quality task and 0.40 (IQR
= 0.07) for the interference task. We repeated the analysis
using the rank transformed rating data, i.e. treating the data
as ordinal, and obtained higher medians of 0.77 (IQR = 0.17)
for the sound-quality task and 0.81 (IQR = 0.19) for the in-
terference task. This suggests that listeners were consistent
with one another as to the relative ordering of the algorithms,
and that the lower absolute agreement can be attributed to
between-listener differences in the use of the rating scale.
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Fig. 2. Bee swarm plots (with boxplots underlaid) of the
within-song Spearman correlations. Markers have been per-
turbed by ± 0.01 to facilitate visual separation.

3.2. Objective metrics

A Spearman correlation analysis, which assesses rank agree-
ment between two variables, was first used to assess the per-
formance of two objective toolkits: BSS Eval (SAR/ISR/SIR)
and PEASS (APS/TPS/IPS). Objective measurements were
made using the same (loudness normalized) stimuli as used
in the experiment, where the reference vocal and accompa-
niment (mixture minus vocal) signals served as ground truth.
Correlations were performed for each of the 16 songs with the
reference and anchors excluded. Fig. 2 shows the correlations
measured using each predictor for the appropriate listening
task. APS performed best for the sound-quality task (median
= 0.90), and SIR performed best for the interference task (me-
dian = 1.00). Although TPS and, to a lesser extent, SAR show
high agreement as to the ordering of the algorithms for a few
songs, the correlations are scattered over a wider region com-
pared to those of APS. Such inconsistencies are even more
pronounced for ISR. IPS correlations were generally strong
(median: 0.80) for the interference task, but SIR performed
more consistently.

Following Cartwright et al. [11], a Pearson correlation
coefficient r was calculated using the across-participant me-
dians of all 80 test sounds (16 songs x 5 systems) and the
measures of each metric. The correlations obtained using the
four sound-quality metrics were rAPS = 0.88, rTPS = 0.79,
rSAR = 0.65, and rISR = 0.28. These effect sizes indicate
that APS yields the strongest relationship with the subjective
sound-quality ratings, with ISR performing the worst. Given
that previous studies have found associations between SAR
and sound-quality perception [11, 12], it is interesting to com-
pare this metric with APS. Fig. 3 shows the regression-fitted
measures of both metrics versus the median subjective rat-
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Fig. 3. Linear-regression fitted APS and SAR ratings versus
medians of the subjective ratings for all test sounds.

ings, and indicates a stronger monotonic upward trend when
using APS, though marked deviations are observable for both
metrics. Indeed, the root-mean-square error (RMSE; com-
puting with 2 degrees of freedom) between the fitted objec-
tive and subjective ratings was 11.9% for APS and 18.7% for
SAR, both of practical significance when judged in the con-
text of the 100-point rating scale. The correlations measured
using the two interference-based metrics were: rSIR = 0.81
and rIPS = 0.81. After fitting their measures to the subjective
ratings, both metrics had an RMSE of 15%, and so we may
infer comparable predictive capability.

4. CONCLUSIONS

The perception of sound quality and interference of 16
singing voices extracted by a range of source separation
algorithms was measured. By redefining the sound-quality
scale, these two perceptual attributes were measured inde-
pendently of one another. A correlation analysis was used to
assess the predictive capability of two objective toolkits for
source separation performance evaluation. The results show
that the APS metric of the PEASS toolkit had the strongest
correlation with the subjective judgements of artifacts and
distortions and is therefore a useful metric for performance
evaluation. Both SIR of BSS Eval and IPS of PEASS showed
comparable correlations with the interference ratings, with
the former predicting well the rank order of the algorithms
within song. In summary, we encourage researchers to make
use of the PEASS toolkit in their evaluations, rather than
relying solely on energy-based metrics. Further refinement
is, however, warranted to reduce prediction errors to within
tolerable limits. Additional experiments are needed to assess
these metrics on different types of stimuli and also assess
across-song prediction given specific separation algorithms.
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