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ABSTRACT

The speech transmission index (STI) of a listening position
within a given room indicates the quality and intelligibility of
speech uttered in that room. The measure is very reliable for
predicting speech intelligibility in many room conditions but
requires an STI measurement of the impulse response for the
room. We present a method for blindly estimating the STI
without measuring or modeling the impulse response of the
room using deep convolutional neural networks. Our model
is trained entirely using simulated room impulse responses
combined with clean speech examples from the DAPS dataset
[1] and works directly on PCM audio. Our experiments show
that our method predicts true STI with a high degree of accu-
racy – an average error of under 4%. It can also distinguish
between different STI conditions to a level of granularity that
is comparable to humans.

Index Terms— Speech quality, speech enhancement,
speech transmission index

1. INTRODUCTION

The study of speech intelligibility is the study of how com-
prehensible speech is to listeners, given environmental con-
ditions. These conditions include background noise level, re-
verberation characteristics (e.g. reverberation time), and dis-
tortions in the sound producing equipment (e.g. low qual-
ity loudspeaker). Many measures have been proposed for
objective evaluation of speech intelligibility, such as PESQ
[2], PEAQ [3], and STOI [4]. One of the most successful
measures to date is the speech transmission index (STI) [5].
The speech transmission index of a listening position within
a given room very reliably indicates the quality and intelligi-
bility of speech uttered in that room [6].

The idea behind the speech transmission index is that
the effect an environment has on the spectro-temporal mod-
ulations of speech is correlated with speech intelligibility.
If these modulations are kept intact, the room has a high
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speech transmission index. If the modulations are destroyed
or smeared, the speech transmission index is low. Modula-
tions of speech can be destroyed by reverberation or excessive
background noise.

The speech transmission index ranges from 0 (worst) to
1 (best). This range covers a wide variety of acoustic condi-
tions from large public spaces like sports stadiums (around .3
to .6) to bedrooms and offices (around .8 to .9) all the way
up to professional recording studios (around .97 and above).
The measure is very reliable for predicting speech intelligi-
bility in many room conditions. In informal listening tests,
we found that STI can be used to distinguish pleasant record-
ing scenarios (such as those on professional radio programs)
from amateur recordings (such as podcasts recorded in a liv-
ing room).

The speech transmission index is measured by estimating
the transfer function of a given room with respect to given
speaker and listener positions [7]. This is a laborious manual
process that can by done by creating a signal that mimics the
modulations of speech in different frequency bands, playing
it through a high quality loudspeaker, and recording the out-
put with a high quality microphone. This process takes up
to 15 minutes in good conditions [8]. It can alternatively be
computed from a measurement of the room impulse response,
whose measurement is also laborious [9]. Further, It is not al-
ways possible to take an STI measurement of a space (e.g. in
public spaces like a subway platform). Therefore, the STI for
most prerecorded audio cannot be calculated.

In this work, we present a method to reliably estimate the
speech transmission index from speech recordings, circum-
venting the need to take an STI measurement with special-
ized sound sources (modulated noise) and equipment (high-
quality microphones and loudspeakers). To do this, we train a
convolutional neural network that computes a regression from
time series audio of speech to the speech transmission index
for that room. Applications of our system include identifying
high-quality speech data in large unlabeled speech datasets
(e.g. LibriVox recordings), informing users of recording soft-
ware of problems in their recording setup, or diagnosing prob-
lems for speech recognition systems (e.g. telling users to
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move their smart home device to locations where the speech
transmission index is higher for more reliable usage).

2. RELATED WORK

The most closely related work to our own is a method for
blind estimation of speech transmission index by Unoki et
al. [10]. The speech transmission index is easily calculated
given the impulse response for a given room. The crux of
their method is to estimate the speech transmission index of a
room by computing it from an approximation of the impulse
response of the room. The approximation is derived using a
generalization of Schroeder’s room impulse response model
([11]) and has three parameters: the reverberation time, the
gain factor, and the order of the impulse response. Estimat-
ing these three parameters is constrained by the behavior of
the spectrotemporal modulations of the observed, reverberant
speech. Their method relies on accurate estimation of these
three parameters and a realistic model for room impulse re-
sponses.

In contrast, our method makes no assumptions about the
model of the room impulse response. Their model is con-
strained to the accuracy of generalized Schroeder’s room
impulse response. Our method only assumes that the ob-
served signal is that of speech. We use a deep neural network
that regresses from the reverberant speech to the speech trans-
mission index. Additionally, their system is only tested and
built for acoustic conditions with STIs between .4 and .8
whereas our system leverages a broader spectrum of STIs
all the way up to .99 (professional recording studios). This
broader spectrum includes STIs corresponding to excellent
recordings (e.g. recordings from professional radio pro-
grams) and amateur recordings (e.g. recordings from amateur
podcast producers).

The method in [10] and our proposed method are the only
existing methods for blind estimation of the speech transmis-
sion index we are aware of. A closely related measure is the
speech-to-reverberation modulation energy ratio [12], which
leverages similar assumptions to the method in [10]. How-
ever, many methods have been developed for blind estimation
of other room parameters, such as reverberation time ([13],
[14]). Xiao et al. [15] use a deep neural network that estimates
reverberation time from spectrogram patches. Our work in-
stead estimates the speech transmission index, which has a
more reliable relationship to speech quality [7] (see Figure
1). In [16], the authors implement a system that estimates the
source-to-distortion ratio (SDR) using deep neural network
regression. The technique we employ here is similar but es-
timates the speech transmission index rather than SDR and
uses a simpler network with fewer parameters.

Fig. 1. Speech transmission index versus RT60, a common
measurement of reverberation. The graph is generated from
our synthetic impulse response dataset (Section 3.1). The two
measures are poorly correlated. Long RT60 can still have high
STIs and short RT60 can have low STI.

3. METHOD

3.1. Training data

Our training data is based on speech recordings from the
DAPS (device and produced speech) dataset [1]. The clean
version of the recordings in the DAPS dataset consists of
twenty speakers (ten male, ten female) reading five excerpts
from public domain stories (about 14 minutes per speaker -
280 minutes for the entire dataset). We took the clean record-
ings from DAPS and split them randomly into training and
testing sets, each consisting of 10 speakers (5 male and 5
female - 140 minutes of clean speech). These recordings
were segmented into 1 second chunks with no overlap. Any
1-second chunks that don’t contain any speech were removed.
The recordings from DAPS were downsampled to 16000 Hz
to reduce computational cost.

We performed data augmentation to increase the amount
of data to train our model. We created a library of 1000 artifi-
cial impulse responses using a room impulse simulator [17].
These impulse responses were generated across a variety of
room conditions. The room dimensions varied from 5 meters
to 20 meters along each axis (height, width, and depth). The
absorption coefficients for each wall was chosen from the set
[.01, .1, .3, .5]. The room impulse responses were generated
using the image-source method [18]. The source (speech) was
placed at 1/3 the height, width, and depth of the room. Vir-
tual microphone locations were sampled at varying distances
from the source. Impulse responses were computed for every
microphone-source pair in every room. This procedure re-
sulted in 1000 artificial impulse responses. 500 of these were
placed in a training set and the other 500 were placed in a
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testing set.
For each impulse response, we computed the speech

transmission index using the method described in [5]. We
then used the clean speech from DAPS and the generated
impulse responses with corresponding speech transmission
indices to create a dataset. We generated this dataset on the
fly during training as follows. First, a random selection of
n 1-second audio excerpts were selected from DAPS. Then,
a random selection of n impulse responses were selected
from the impulse response dataset. Each 1-second audio
chunk of an excerpt was convolved with the corresponding
impulse response to produce a reverberant speech signal. The
reverberant speech signal was then paired with the speech
transmission index corresponding to the impulse response
used to generate the reverberant speech, forming a labeled
example (audio signal and speech transmission index).

3.2. Network architecture

We used a fully convolutional neural network with 40095
trainable parameters. Our network takes a one-second clip
of the PCM audio (16,000 samples) as input and outputs an
estimate of the STI. The network architecture is shown in Ta-
ble 1. The first convolutional layer in the network computes
a spectrogram representation of the audio with 128 filters of
length 128 samples (8ms at 16kHz) with a hop size of 64 sam-
ples. The weights of this layer are initialized with a Fourier
basis (sine waves at different frequencies) and are updated
during training to find an optimal spectrogram-like transform
of the data for the task. After this learned time-frequency
representation is obtained, it is passed through a series of 2D
convolutions, leaky ReLU units, and batch normalization lay-
ers. The size of the input is cut in half at each layer until 1
second of audio data maps onto a single number. The output
of the last convolutional layer is passed through a sigmoid ac-
tivation unit to map the output between 0 and 1 (lower and
upper bound for STI, respectively).

3.3. Training the model

The network was trained using the ADAM optimizer [20]
with a loss function of mean squared error between the pre-
dicted and ground truth speech transmission index. We used
a learning rate of .001 and the model was trained for 200
epochs with a batch size of 32. An epoch was a pass over
every clean speech sample in our training dataset, convolved
with some set of impulse responses from the generated im-
pulse responses. In total, this makes for 2, 703, 168 possible
training examples (with each example being 1 second of re-
verberant speech) in our data generation approach, which ran-
domly chooses speech data and impulse response data to train
with. For 200 epochs, this corresponds to roughly 322 hours
of training data. We implemented our models in PyTorch.

Fig. 2. Error in predicting the speech transmission index for
each impulse response in the dataset from the REVERB chal-
lenge [19]. A value of 0 indicated perfect performance. The
network tends to overestimate lower STI values and underes-
timate higher STI values. The overall root mean square error
was 0.037.

4. EVALUATION

We evaluated our model by using the test set of speakers from
DAPS (see Section 3.1) and the set of 18 real-world impulse
responses from the REVERB challenge [19]. We use these
real-world impulse responses to show that our model did not
simply memorize the conditions of the room acoustics sim-
ulator used for training the model. The synthetic impulse
responses used for training were perfect impulse responses,
whereas the ones used for testing were collected in rooms us-
ing imperfect impulses (e.g. balloon pops). Instead of using
1 second audio excerpts from the speech dataset as in train-
ing, we use 5 second audio excerpts. We do this to show our
system working on longer more realistic audio excerpts. Each
5 second excerpt is convolved with one of the 18 impulse re-
sponses from the REVERB challenge. These 5 second ex-
cerpts are passed to the model which outputs estimates of the
speech transmission index over the course of the excerpt. To
get a single speech transmission index for the entire excerpt,
we take the mean of all of the estimated speech transmission
indices for the entire recording. We construct 2000 testing
examples.

We then measured how close the STI estimate using
our method is to the ground truth STI. Figure 2 shows the
prediction performance as a function of the speech trans-
mission index (STI). It shows a tendency to overestimate
lower STI conditions and underestimate higher STI condi-
tions. Our method estimates the speech transmission index
within 3.7% of the actual speech transmission index on av-
erage. A competing method from Unoki et al. [10] reports
a similar experiment (with different speech data and impulse
responses). Due to unavailable code and unavailable speech
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Layer type Input Conv (1D) Conv (1D) Conv2D Conv2D Conv2D Conv2D Conv2D
# of Filters - 128 128 8 16 32 1 1
Output Shape (N, 1, 16000) (N, 128, 253) (N, 128, 253) (N, 8, 253) (N, 16, 111) (N, 32, 40) (N, 1, 5) (N, 1)
Filter Size/Stride - 128, 64 5, 1 (128, 1), (128, 1) (1, 32), (1, 2) (1, 32), (1, 2) (1, 32), (1, 2) (1, 5)
Activation Function - - - LeakyReLU LeakyReLU LeakyReLU - Sigmoid
Notes 1 sec. audio Fourier init. Spectrogram smoothing Batch norm before LeakyReLU Batch norm before LeakyReLU Batch norm before LeakyReLU - -

Table 1. Network architecture. The input to the network is 1 second of PCM audio of the reverberant speech. It is passed
through a series of convolutional layers. The first convolutional layer generates a spectrogram-like representation of the audio.
A series of 2D convolutional layers is then applied to the representation. Each layer halves the size of the representation until
just 1 number is output for every second of audio. The network has 40095 trainable parameters. N is the batch size.

Fig. 3. Network performance in distinguishing STI conditions versus human performance (taken from the polynomial regression
published in [6]). The just noticeable difference (50%) in STI is around the same for the network ( .026) and for humans (.03).
The recommended increase in speech transmission index to have an obvious impact on speech quality is around .1 for both.

and impulse response data, we were unable to directly com-
pare our method with their system (or a working reproduction
of their method). Their experiment reports an RMS error of
.049 on reverberant speech signals. While the experiments
use different data, the reported root mean squared errors on
similar tasks suggests our method has a 24% improvement
over a competing method. Additionally, the root mean square
error of our method (.037) is close to the reported just no-
ticeable difference (.03) for the speech transmission index
[6].

We then tested whether our system performs well when
distinguishing speech transmission index conditions from
each other. Figure 3 shows the network performance in a
just noticeable difference (JND) experiment on the speech
transmission index, overlaid with human performance on a
similar experiment (taken from [6]). In this experiment, the
network is queried with pairs of reverberant speech examples
that have different corresponding STIs. We use the estimated
STIs output by the network to decide which of the reverberant
speech examples has the higher STI. Figure 3 shows that as
the difference gets larger, the network performs better.

In [6], the authors report the results of a similar experi-
ment done with humans, as well as a regression for that ex-
periment. The experiment was reported using clarity (C50)

but they show a way to convert between C50 and STI. They
found that humans have a just noticeable difference of .03 for
the speech transmission index and get around 100% accuracy
at a difference of .1. We see similar behavior for our model,
with a just noticeable difference of .026 and perfect accuracy
around a difference of .1.

5. CONCLUSION

The speech transmission index is a salient measure of how in-
telligible speech is in a given room. Traditionally, measuring
the STI is a laborious task that requires access to the room.
In this work, we have presented a method for blindly estimat-
ing the speech transmission index using convolutional neu-
ral networks. The method is trained entirely using simulated
room impulse responses combined with clean speech exam-
ples from the DAPS dataset [1]. In experiments, the network
performance is on par with human performance on a simi-
lar task. Perhaps models trained to predict other perceptual
metrics such as PESQ [2], PEAQ [3], STOI [4] from PCM
audio could be used to estimate just noticeable differences for
humans. Our method also performs well in absolute terms,
estimating the speech transmission index within 3.7% of the
actual speech transmission index on average.
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