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ABSTRACT

We present InstListener, a system that takes an expressive mono-
phonic solo instrument performance by a human performer as the
input and imitates its audio recordings by using an existing MIDI
(Musical Instrument Digital Interface) synthesizer. It automatically
analyzes the input and estimates, for each musical note, expres-
sive performance parameters such as the timing, duration, discrete
semitone-level pitch, amplitude, continuous pitch contour, and con-
tinuous amplitude contour. The system uses an iterative process to
estimate and update those parameters by analyzing both the input
and output of the system so that the output from the MIDI syn-
thesizer can be similar enough to the input. Our evaluation results
showed that the iterative parameter estimation improved the accu-
racy of imitating of the input performance and thus increased the
naturalness and expressiveness of the output performance.

Index Terms— performance imitation, expressive musical per-
formance, iterative parameter estimation, performance synthesis by
analysis, musical expression

1. INTRODUCTION AND MOTIVATION

Human musical performances are expressive, making musical per-
formances attractive. People tend to refer to performances without
any expressions as “robotic” or “deadpan”. Even when a computer
is used in generating music, people often tend to prefer more expres-
sive performances. Thus researchers have been putting efforts into
analyzing and modeling expressive music [1–5]. Pioneers such as
Lejaren Hiller and Iannis Xenakis [6] gained access to computers to
make music with a “human feel”. Since 1957, when Max Mathews
first made sound from the computer [7], there have been existing
lots of research efforts onto mechanical or computational modeling
of expressive performance of music [5, 8]. It has shown that chang-
ing the tempo and loudness, and use of expressive articulation are
the two most common approaches for expressive performances [9].
Other efforts have been putting onto the structures and phrasing of
music, or relationship between pitch and velocity [10, 11].

On the other hand, various works have been done on synthesiz-
ing expressive musical performances, for example, rule-based model
[12–14], statistical analysis and stochastic model [15, 16], getting
physical measurement of musical performance through musical in-
struments [17, 18], and among others [19–23]. There are also many
researchers working on automatic music transcription that aims to
accurately transcribe audio performances into score. However, few
researches have been working on parameterizing musical expres-
sions other than observing the expressions [24, 25].

Our aim is to fill in the gap by bringing a new insight into the
process of generating expressive musical performances. Although
musical score is a compact and neat way to imply musical expres-
sion, it is not enough to carry all the nuances in a musical perfor-
mances. For performers and musicologists who are interested in
studying acoustic musical performances, an automatic transcription
of a performance back to music notation is clearly not enough. We
therefore imitate existing musical performances to obtain their faith-
ful reproduction by using MIDI synthesizers. By estimating and
controlling continuous expressive MIDI parameters, we will hope-
fully have a better understanding of musical expressions themselves.
Parametric representation helps decoding the mystery of an expres-
sive musical performance into a set of parameters. Thus we consider
it useful to make a realistic imitation of the acoustic instrumental
performance. It can provide invaluable resource for not only peo-
ple who study musical performances but also people who apply and
transfer certain musical expressions into other domains.

We propose InstListener, a system that analyzes a recording of
a musical instrument performance to faithfully transcribe its nuance
by reducing expressive performances into several dimensions that
can be encoded into MIDI information. The goal of this system is
to convert the original input recording into an expressive musical
performance in MIDI format that approximates the input well. For
the purpose of this paper, we focus on monophonic instruments such
as saxophone or clarinet.

2. INSTLISTENER

The InstListener system takes, as the input, an audio file that con-
tains a monaural recording of a monophonic solo instrument perfor-
mance by a human performer. After a MIDI synthesizer is specified,
it analyzes the input and generates, as the output, a MIDI file that
contains MIDI notes and parameters for imitating the input perfor-
mance by using the specified MIDI synthesizer. The system analyzes
the pitch contour, the onset time, and the root-mean-square energy
(RMSE) for each musical note of the input performance, and then by
using those acoustic features (analyzed results), it estimates MIDI
parameters of each musical note: the timing and duration (i.e., on-
set and offset of the note), the discrete semitone-level pitch (MIDI
note number of the note), the amplitude (MIDI velocity of the note),
continuous pitch control parameters (MIDI pitch bend control), and
continuous amplitude control parameters (MIDI volume control).

Since different MIDI synthesizers have different characteristics
and expressiveness, the resulting MIDI file should depend on the
specified target synthesizer to accurately reproduce the input per-
formance. InstListener therefore leverages an iterative parameter
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Fig. 1: System workflow of InstListener. The system extracts pitch
contour, onset time, and root-mean-square energy (RMSE).

estimation technique, which was proposed by Nakano and Goto in
VocaListener [26, 27], that imitates singing voices by generating
singing synthesis parameters. It is used as a basis and inspiration of
this work.

Even if we provide the same MIDI parameters, different MIDI
synthesizers generate sounds having slightly different expressions.
InstListener therefore analyzes not only the input, but also the out-
put from the target MIDI synthesizer in the same manner, and then
compares their acoustic features. On the basis of this comparison,
it updates the estimated MIDI parameters so that the output can be
more similar to the input (e.g., if the pitch of the output is higher
than the input, MIDI pitch bend control at its position is adjusted
to compensate its difference). Our contribution is to use such an
iterative process to imitate instrumental performances and explore
dimensions of expressiveness that contribute to improve the natural-
ness of synthesized sounds.

InstListener consists of two parts: instrument performance
analysis and synthesis, and performance comparison and micro-
adjustment. The flow of the system is shown in Figure 1.

2.1. Feature Extraction

We first start with a feature extraction process that performs note
onset detection as well as pitch extraction on audio signals. We
perform note onset detection on the audio file based on convolu-
tion neural network proposed in [28] through the madmom python
package [29]. We then use probabilistic YIN (pYIN) [30] algorithm
through sonic annotator [31] toolkit for extracting note pitches and
pitch contours because pYIN retains a smoothed pitch contour, pre-
serving fine detailed melodic feature of instrumental performance.

We then extract the energy component of the performance by com-
puting the root-mean-square energy (RMSE) from the input audio
file using the python package librosa [32].

2.2. Parameter mapping

Next, we map from acoustic features into discrete parameters for
MIDI. We map the pitch contour into MIDI message. Unlike the
piano, a pitched monophonic instrument (such as a saxophone or
a clarinet) has continuous pitch contours rather than discrete ones.
Thus, to reproduce nature expressive performance, we utilize the
pitch bend control in MIDI file to reproduce a complete pitch con-
tour. Given a pitch contour and a series of note onset times, we aver-
age the pitch for each note within the note duration distinguished by
note onsets, to be further converted into MIDI note number. Based
on the pitch contour information, we calculate the deviation of the
actual pitch at certain time through the note from the MIDI note
number, to be encoded as pitch bend information in the MIDI. Then,
we map the RMSE into MIDI velocity level through linear mapping
(with the maximum value corresponding to 127 as initial settings).
Finally, we convert all the above information into the output MIDI
file using pretty midi python package1.

2.3. Iterative listening process

Once a MIDI file imitating the original recording is generated, In-
stListener synthesizes it to generate an audio file. It uses pyFlu-
idSynth2 with soundfonts as a MIDI synthesizer in our current im-
plementation. It then analyzes the MIDI synthesized audio file to
obtain its acoustical features, which are then compared with acous-
tical features of the original input audio file to update the parameters
to make the output more similar to the input. This iterative updat-
ing process is repeated until the parameters could converge. Or, we
could stop repeating after a fixed number of iterations.

We use the pitch contour as one of the main acoustical features
in the iterative process for comparison. During the comparison, we
perform dynamic time warping (DTW) [33] between the pitch con-
tour of the input and the pitch contour of the output. By using the
DTW, InstListener adjusts and updates not only pitch contours, but
also onset times because musical notes (and their onset times and
durations) should be temporally moved in order to adjust the pitch
alignment. In this way, the iterative process could contribute to im-
prove the accuracy of musical note detection.

For this DTW, we want to find a mapping path

{(p1, q1), (p2, q2), ..., (pk, qk)} (1)

such that the distance on this mapping path

k∑
i=1

|t(pi)− r(qi)| (2)

is minimized, with certain constraints as indicated in the DTW al-
gorithm. As illustrated in Figure 2, the pitch contour got adjusted
to approximate the original pitch contour through the iterations. In-
stListener automatically adjusts the onset time along with pitch in-
formation by minimizing such distance.

We also use the RMSE as an acoustical feature in the iterative
process for comparison. We perform the same iterative and com-
parison process to adjust the MIDI velocity and MIDI volume con-
trol by minimizing the mean square error between the RMSE of the

1https://github.com/craffel/pretty-midi
2https://pypi.python.org/pypi/pyFluidSynth
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Fig. 2: Pitch contour and onset information. Top: before iterative
adjustments. Bottom: after InstListener’s iterative process (two con-
tours get closer).

Fig. 3: Volume curve. Top: before iterative adjustments. Bottom:
after InstListener’s iterative process (two contours get closer).

original input performance and the RMSE of the MIDI-synthesized
performance through least-square fitting. Figure 3 illustrates this ad-
justment of the MIDI velocities and volume control.

3. EXPERIMENTS

Musical expression is not yet an explicit action to measure. We pro-
pose our own method of evaluation. To evaluate different parameters
and conditions, we implemented and conducted our experiments us-
ing a crowdsourcing platform, Amazon Mechanical Turk (MTurk)3.

We first evaluated the similarity between the original input per-
formance and each MIDI performance (MIDI rendition) synthesized
by InstListener in order to compare different methods and condi-
tions. We then evaluated the naturalness of the musical performances
synthesized by InstListener for a further perceptual evaluation. We
asked the turkers4 to compare different renditions of expressive syn-
thesized musical performances and the original input recording, and
to rate how close (similar) each synthesized performance is to the
original performance, as well as how natural do they think each per-
formance is.

To avoid unreliable random behaviors that could happen on
crowdsourcing tasks, we applied a pre-screening process by using a
listening test to validate their normal hearing condition and behav-
iors. We used the following criteria to discard undesirable results
from unreliable turkers:

1. We discarded turkers who did not pass the listening test. Our
listening test consisted of three audio segments, each consist-
ing of several sine tones. Each turker was asked to report the
number of tones in each segment. We discarded the results
from turkers who did not report them correctly.

2. We discarded turkers who finished the task much faster than
the total time of the musical performances.

3.1. Experiment 1: Similarity perception test

In this similarity test experiment, the turkers were asked to listen to
eleven sets of musical performances. For each set, they were asked
to listen to the original input recording of a musical performance.
Then given five different synthesized performances (renditions) imi-
tating the same input, they were asked to rate how similar the current
rendition is compared with the original performance in terms of mu-
sical expression. In our instruction, we described that, “by musical
expressions, we refer to features such as musical dynamics, pitch
contours, or overall musical gesture feelings.” They were to rate the
similarity on a scale of 1 to 7, with 7 meaning almost the same as the
original performance, while 1 means very different from the perfor-
mance in terms of musical expressions.

The five different renditions of the same original performance
include: (1) DeadPan, MIDI without micro time adjustment of note
onset and dynamic level as indicated by performers, (2) MIDI with
velocity and without pitch bend information, (3) MIDI with velocity
and pitch bend information, (4) InstListener with an expressive mu-
sical performance rendition with velocity and pitch bend imitating
the original performance, and (5) Original input performance played
be musicians.

We recruited a total of 50 turkers in the similarity listening test
through MTurk. Each turker was paid for an amount of $0.5 for

3https://requester.mturk.com/
4We use a term “turker” to refer to a subject (crowdsourcing worker) that

did our listening experiment on MTurk.

583



Fig. 4: Box Plot of Similarity Measurement test. DeadPan: MIDI
without dynamics and that was quantized to 1/8 note. VT: MIDI that
incorporates velocity and timing information. VTP: Adding pitch
bend information in addition to velocity and timing. InstListener:
MIDI rendition after the iterative process. Original: recording from
the original input performances by musicians.

completing the task. Each task lasted for 20 to 30 minutes. In ad-
dition to the pre-screening process, we further excluded results from
turkers who rated the original performance under the score of 5 out
of 7 because we think they were unable to distinguish musical ex-
pressions for the purpose of our paper. The general pre-screening
filtered out 4 who did not report the number of tones correctly, and 3
who completed too fast, and this task-specific pre-screening filtered
out 22 out of 50 turkers. We thus included a total of 31 turkers into
our experiment.

The result is shown in Figure 4. By filtering out unreliable turk-
ers, we found that the original musical performances were scored
the highest and DeadPan MIDI renditions were scored the lowest,
as we expected. While adding the velocity and timing information
contributes to the higher similarity of musical expressions, adding
the degree of micro-tuning pitch contour reduces the variation of
perception among the turkers. Finally, after the iterative parameter
estimation process, InstListener was scored the highest as the most
similar to the original recording in terms of musical expressions.

3.2. Experiment 2: Naturalness Perception Test

We are further interested in features that contribute to natural and ex-
pressive musical performances as perceived by human. In this exper-
iment, we asked another batch of turkers to listen to the same eleven
sets of performances. For each set, they were asked to rate the nat-
uralness of a musical performance. The experiment lasted 20 to 30
minutes, and the turkers were paid for an amount of $1.5. They were
asked to rate the naturalness on a scale of 1 to 5, with 5 meaning that
the performance is very natural and expressive, while 1 means the
performance sounds like robotic performances. We used a scale of
5 instead 7 because we think that the naturalness and expressiveness
are too hard to be rated using many scales.

In this experiment, we collected responses from a total of 50
turkers. Two of them were discarded because they failed the listening
test and were not qualified to be included.

As we can see from Figure 5, the non-expressive deadpan MIDI
rendition was scored the lowest (very robotic) by the turkers. While
the original performance was scored the highest, as we gradually
added parameters to the MIDI rendition, we were able to see an per-
ceptual improvement. When the velocity and pitch bend information
were added, the scores became higher. Furthermore, InstListener
with the iterative process was scored higher, though not as compara-

Fig. 5: Box Plot of Expressiveness and Naturalness Perceptual test.
DeadPan: MIDI without dynamics and that was quantized to 1/8
note. VT: MIDI that incorporates velocity and timing information.
VTP: Adding pitch bend information in addition to velocity and tim-
ing. InstListener: MIDI rendition after the iterative process. Origi-
nal: recording from the original input performances by musicians.

ble as the original one.
The result is shown in Figure 5. We found that adding the veloc-

ity, timing, and pitch information to the deadpan did not contribute
to the naturalness perception. The score for InstListener, however,
still got the best score among the others except for the original per-
formance. We thus confirmed that the naturalness of the synthesized
performances by InstListener was not low and was higher than other
renditions without the iterative process.

4. DISCUSSION AND CONCLUSION

We present InstListener, a system that converts expressive musical
performances into the MIDI-based parametric representation. In-
stListener has a potential to enable people to easily transfer musi-
cal expressions onto other musical instruments by only changing the
timbre space (e.g., MIDI program number). In addition to rendering
with such a variety of timbres, people can also intentionally change
some portions of the estimated parameters to achieve a different mu-
sical style (e.g., keep the same velocity while changing the pitch
contour or timbre separately). In this way, the contributions of this
paper are not only to imitate, parameterize, and aggregate musical
expressions by human performers, but also to control musical ex-
pressions more flexibly to achieve and explore various expressions.

We evaluated our system from the perceptual point of view. We
first evaluated the success of imitating and approximating the origi-
nal performance not only at the note level, but also in terms of mu-
sical expressions. Our experimental results showed that InstListener
imitated the original musician’s performance well, and the results
got much improved after our iteration process. However, even if
a synthesized performance is similar enough to its original perfor-
mance, the naturalness of the synthesized performance is not neces-
sarily high. We therefore explored the naturalness of the estimated
parameters through the MIDI rendition, and confirmed that the syn-
thesized performance imitated by InstListener was natural enough.
Future work includes constructing performers’ models using param-
eterized controls, exploring how humans express musical expres-
sions and features that contribute to expressive performances.
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