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ABSTRACT
Audio signals are highly structured from a low, signal level to

high cognitive aspects. We investigate how to exploit the common
sparse structure between similar audio frames in order to reconstruct
missing data in audio signals. While joint sparse models and related
algorithms have been widely studied, one important challenge is to
locate such similar frames : the search must be adapted to the joint-
sparse model and should be fast and one must deal with missing data
in the frames. We propose, compare and discuss several similarity
measures dedicated to this task. We then show how this strategy can
lead to better reconstruction of missing data in audio signals.

Index Terms— Sparse approximation, joint sparsity, inpainting,
matching pursuit, audio.

1. INTRODUCTION

Audio signals are highly structured at many levels. The lowest level
of structuring is local in time and includes frequency components,
transients and noise, which have been efficiently modeled by sparse
representations [1]. Non-local similarities are another source of
structure: speech, music and other sounds are indeed composed of
patterns that occur several times in a signal: phonemes, musical
notes, and so on. Such non-local similarities have proven useful to
process images [2] and sounds [3, 4].

Exploiting both local structures and non-local ones in the con-
text of sparse representations has been made possible using joint
or simultaneous sparse models, especially for image inpainting [5].
Similar image patches or audio frames are simultaneously decom-
posed in order to find sparse representations sharing the same sup-
port, as represented in Figure 1. Provided that these similar areas
have been adequately selected, the sparse representations are better
estimated [6, 7, 8].

Fig. 1. Location of non-zero coefficients (black) in sparse (left) and
joint-sparse (right) vectors.

We investigate the use of such joint-sparse models for audio in-
painting, where selecting similar audio frames when data is miss-
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ing is a non-trivial task. Audio inpainting is about restoration of
localized missing parts in an audio signal. This could be due to im-
pulsive noise or clicks, CD scratches, clipping or packet loss. The
methods presented in the literature range from interpolation [9] and
Bayesian approach [10] to sparse representation (SR) which proved
to be fairly competitive with state-of-the-art methods [11]. In the lat-
ter, the local sparse structure of audio frames in a Gabor dictionary
is exploited for recovering missing or distorted audio data with ex-
tensions of the Orthogonal Matching Pursuit (OMP) algorithm [12].
More recently, application to audio inpainting in the clipping case
have been presented in [13] where the authors use dependencies be-
tween neighboring coefficients to improve the declipping algorithm.
The results are promising and demonstrate that there is an interest in
using such similarity information for predicting the missing samples.
They show the benefits of joint sparsity for audio inpainting, but the
approach is limited to the simultaneous decomposition of neighbor-
ing frames and the question of finding non-local similarities is not
addressed. For non-local structures, recent works [3, 4] have intro-
duced a method for restoring long duration gaps in audio signals
using similarity graphs. The inpainting of a large hole is realized by
extracting features from the surrounding data and by finding similar
regions based on these border contents.

In this work, we propose a new framework based on a joint-
sparsity model to overcome the audio inpainting problem in the time
domain. The main issue and originality in this approach is to find the
similar non-local regions in the audio signal, i.e., regions that share
common features, and especially a common sparse support, while
samples are missing in the target region as well as in the selected
regions. This may be achieved by using similarity measures: the
choice of an appropriate audio similarity measure is is crucial and
non-trivial. We propose a comparative study between several mea-
sures of similarity. It shows that the correlation measure widely used
to find similar patches in image processing is not appropriate for au-
dio data. As a result, we select a more effective and robust similarity
measure for audio inpainting.

The paper is organized as follows. In section 2, we present the si-
multaneous sparse approximation problem in the context of inpaint-
ing. Then in section 3, we introduce and compare several measures
to select similar audio frames for a joint-sparse decomposition. Fi-
nally, we present inpainting results in section 4.

2. JOINT SPARSE REPRESENTATION

2.1. Notations

We adopt the following notations:

• s ∈ RLs is a full signal with length Ls and m ∈ {0, 1}Ls is
a related binary mask vector where the elements equal 1 for
observed samples and 0 for missing samples.
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• The signal is segmented into overlapping frames with length
L: for i ∈ [1, Ls−L+1], si = [s (i+ n)]L−1

n=0 ∈ RL denote
the frame starting at sample i and mi = [m (i+ n)]L−1

n=0 ∈
{0, 1}L denotes the related mask vector.

• supp x denotes the indexes of non-zero entries of a vector x.

• ‖X‖p,q =∆
∑
r ‖x

r‖pq is the mixed norm `p,q of matrix X for
any p, q ∈ R+. xr denotes the rth row of X.

• xν = x
‖x‖2

is the normalized version of any vector x 6= 0.

• |.| is the cardinal of a set and � the Hadamard product.

2.2. Standard sparse approximation problem

In a Sparse Representations (SR) modeling framework [14], each
audio frame can be written as:

s = Dx + n (1)

where D ∈ RL×Ω is the so-called dictionary, x ∈ RΩ is the sparse
representation and n ∈ RL is the noise.
The SR model was adapted to the audio inpainting case in [11].
Given a frame s with binary mask m ∈ {0, 1}L, the observation
is

y = m� s. (2)

and the inpainting optimization problem writes

arg min
x

‖x‖0 s.t. ‖y −m� (Dx)‖22 < ε (3)

where ε > 0 is a tolerance on the residual energy. Since the `0 norm
leads to an NP-hard problem, an approximated sparse solution may
be obtained using a variant of the OMP algorithm [12] where all the
dictionary columns are internally re-normalized to unit norm due to
the partial observations. The unknown samples are then recovered
from the given sparse solution.

2.3. Joint sparse problem

Let us assume that we are provided a similarity measure γ to select
audio frames with similar sparse support. Given a target frame s
and a set of candidate frames si, i ∈ [1, Ls − L+ 1], we define the
selected frames by the index set:

S =∆ {i ∈ [1, Ls − L+ 1] | γ(s, si) ≥ γS } (4)

where parameter γS is adjusted to control the number of selected
frames |S|. Then, the joint sparsity problem is formulated as

arg min
XS

‖XS‖p,q s.t. ‖SS −DXS‖2F < εS (5)

where εS > 0 and SS = [si]i∈S (resp. XS = [xi]i∈S ) is a matrix in
which each column is a selected frame (resp. a related sparse vector).
In the literature, many algorithms have been designed to solve this
optimization problem where the pair (p, q) takes the values (0,∞) to
count the number of non-zero rows or (1, 2), for a convex relaxation,
so that joint-sparsity is enforced in XS .

In this paper, we propose to use the greedy algorithm called Si-
multaneous Orthogonal Matching Pursuit (S-OMP) which general-
izes the OMP algorithm to the joint-sparsity case [6]. This approach
is efficient when all the input signals are well approximated by the
same set of atoms which is our case. The inpainting problem with
(S-OMP) for a frame s is then

arg min
XS

‖XS‖0,∞ s.t. ‖MS � (SS −DXS)‖2F < εS (6)

where MS = [mi]i∈S is the binary measurement matrix of the se-

lected frames and ‖XS‖0,∞ =

∣∣∣∣ ⋃
k∈S

supp(xk)

∣∣∣∣ counts the number

of non-zero rows in matrix XS .
The description of the S-OMP inpainting algorithm is given in

Table 1. When |S| = 1, it is equivalent to the OMP inpainting algo-
rithm in [11]. The main idea in the algorithm, is that all dictionary
columns are re-normalized to unit norm for only the reliable samples
for each selected frame k in the similar set S. Once the algorithm is
executed for a frame s, reconstruction is done using only coefficients
corresponding to that frame index.

Input: SS , MS , D = {dj}j∈Ω, T , εS

Initialize:
• Iteration counter iter = 0

• Support Set J0 = ∅
• Residual R0 = MS � SS = YS

Repeat: until iter = T or ‖Riter‖F < εS

• iter = iter + 1

• For k ∈ S:

– Dictionary normalization D̃k = diag(mk)×D×
Wk where Wk is a diagonal matrix such that
Wk(j, j) = ‖diag(mk)× dj‖−1

2 .

– projk = 〈 d̃kj ,Riter−1ek〉 , ∀j ∈ Ω and where
ek denotes the kth canonical base vector in R|S|.

• Select atom ĵ = arg max
j∈Ω

∑
k∈S
|projk|

• Update support Jiter = Jiter−1 ∪
{
ĵ
}

• Update current solution for each column k

xk,iter = arg min
u

∥∥∥yk − D̃k,Jiteru
∥∥∥

2

• Update residual for each collumn k
rk,iter = yk − D̃k,Jiterxk,iter

Output: XS with: xk = Wkxk,iter , ∀k ∈ S

Table 1. S-OMP Inpainting algorithm.

3. SELECTION OF SIMILAR FRAMES

The effectiveness of the joint-sparsity approach depends on select-
ing similar frames. For a target frame s with approximated sparse
vector x, we would like to select a set of frames that have sparse
approximations that share the same support as x without having to
make a sparse decomposition at the frame selection step. To do so,
we are looking for similarity measures that can mimic the compar-
ison between the sparse supports. Such similarity measures have
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been developed in image processing [2] and are generally based on
the correlation between images patches, which would correspond to
correlating audio frames in our case. We study here how appropriate
this choice is, showing that alternate similarity measures should be
preferred.

3.1. Proposed measures

We propose to use different similarity criteria in order to find a useful
measure for joint-sparse approximation in a redundant Fourier dic-
tionary. Several measures between a target frames s and a candidate
frame si are compared:

• Normalized correlation: the normalized correlation is de-
fined in the time domain and can be computed in the Fourier
domain by considering the angle between the DFT ŝ and ŝi of
both frames:

γcorr(s, si) =∆ 〈 sν , sνi 〉 = 〈 ŝ, ŝi〉 = cos (∠ (̂sν , ŝνi )) (7)

• Spectral cosine similarity: in order to discard phase effects,
one may compute the cosine similarity between the normal-
ized modulus of the DFT vectors as

γm(̂s, ŝi) = cos (∠ (|̂s|ν , |̂si|ν))

• Itakura Saito (IS) divergence: from the IS divergence
widely used for audio processing

dIS (̂s, ŝi) =
1

L

∑
k

[∣∣∣∣ ŝν(k)

ŝνi (k)

∣∣∣∣− log

(∣∣∣∣ ŝν(k)

ŝνi (k)

∣∣∣∣)− 1

]
,

One can get the IS similarity by normalizing it with respect
to the maximum value and subtract the result from 1.

3.2. Experiment

In order to analyze how appropriate the similarity measures are, we
propose to compare their ability to select the same frames as a refer-
ence method that actually computes the sparse decompositions and
find the most similar ones.

The reference method select frames based on the Hamming dis-
tance between the supports of the sparse representations of the target
frame ŝ and the candidate frames ŝi for i ∈ [1, Ls−L+1], using the
OMP algorithm. We also compute all the above similarity measures
and select the |S|most similar frames in each case. A similarity map
is generated for the reference method and for each measure showing
the selected frames and how they are located.

In Figure 2, we give an example for a small region in a speech
audio signal sampled at 8KHz. We can see that the structures in
the Hamming map are approximately reproduced in the similarity
maps of the other measures except the correlation measure in which
aligned structures parallel to the diagonal appear. Indeed, when cor-
relating two frames, interferences due small phase differences cause
low correlation values even when frames have similar sparse sup-
ports. As a consequence, the correlation similarity is not a good
proxy for the reference Hamming similarity between sparse repre-
sentations : the correlation should be computed with a unit hop size
in order to select similar frames that are perfectly aligned, which
would be computationally demanding and not necessary for the joint
sparsity algorithm using a Fourier dictionary. On the contrary, the
other two similarity measures are not sensitive to phase differences.

In order to select the best similarity measure, we compare the
sets of frames selected by the reference method and by the proposed
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Fig. 2. Similarity maps for the reference frame selection method
(Hamming similarity, top left) and the proposed measures.

measures, for various ratios of missing data, using the same experi-
mental conditions as in Section 4. Results are averaged for a speech
and a piano examples and are shown in Table 2. They confirm that
the correlation measure is not appropriate and that the spectral co-
sine similarity seems to be more efficient than the IS similarity for
all the considered ratios of missing data. In the rest of the paper, we
have selected the similarity based on the spectral cosine similarity.

Missing data (%) 0 20 40 60 80
γcorr 32.6 30.8 29.3 28.8 27.6
γm 39.4 36.1 33.7 31.2 29.3
γIS 34.2 32.4 31.1 29.5 28.1

Table 2. Mean intersection between the sets of frames selected by
the reference method and the proposed similarity measures (as a ratio
of the total number of selected frames.), as a function of the ratio of
missing data.

4. INPAINTING RESULTS

In this section, we show how the frame selection strategy com-
bined with the joint-sparse estimation can solve an audio inpainting
problem1. The performance is evaluated by computing the aver-
age signal-to-noise-ratio on all the reconstructed frames as defined
in [11]:
• either on all the samples ”SNRfull”.
• or only on the recovered samples ”SNRm”.
The results are obtained for two different audio signals sampled

at 8KHz: a melody piano and a male speech composed of one sen-
tence. The duration of each of them is 4 seconds and they are seg-
mented with an 8ms hop size in order to obtain about 500 frames

1The code and data to reproduce the experiments of this paper are avail-
able on https://mad.lis-lab.fr/.
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with length 32ms (256 samples) in each sound. Performance results
are average over those 500 frames. The inpainting S-OMP algorithm
with a complex Fourier dictionary (S-OMP F) is compared to the in-
painting OMP algorithm with two types of dictionaries: the same
complex Fourier dictionary (OMP F) and the real Gabor dictionary
(OMP G) used in [11]. All dictionaries are with size 256× 512. The
sparse estimation algorithms stop when 64 atoms are selected.

In Figure 3, we take a particular case where 50% of the samples
are missing, by blocks of duration 0.25 ms. We plot the SNRm

values as a function of the number of selected frames |S|. For this
case, we can see that the good SNR values are obtained for a size
|S| equal to or greater than 4, depending on the signal. For |S| =
1, the inpainting S-OMP F is equivalent to the inpainting OMP F
algorithm. On those examples, one can see that only a few frames
need to be selected to obtain a performance improvement. Selecting
too many frames should be avoided since it would cause a significant
increase in the computational time and since the performance may
slightly decrease, probably due to the selection of unsuitable frames.
For the rest of the experiments, we set |S| to 4.
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Fig. 3. Average SNRm vs. number of selected frames |S| for the
speech (left) and piano (right) examples.

We present inpainting results as a function of the ratio of miss-
ing data in Figure 4. One can see that the inpainting S-OMP based
on the joint sparsity outperforms the two versions of the inpainting
OMP when 30% to 70% of the data is missing but it is less efficient
for extremely low or high ratios. The flat slope of the S-OMP curve
in this 30− 70% area would suggest that the similar frames are use-
ful to reach better performance in a larger range of problems, being
more robust in adversarial conditions with many missing data, until
a limit of 70% where the performance starts to drop here, probably
due to more errors in the frame selection or the sparse estimation.
For a very low ratio of missing data, the proposed method does not
outperform the OMP approaches which can be explained as follows.
First, the number of observation is high enough so that OMP esti-
mates a good sparse decomposition. Second, S-OMP constrains the
support of the selected frames to be equal, which may degrade the
results if those supports are not exactly the same, as with real data.
We also report that in those examples, 80 % of the selected similar
frames are neighboring frames located at 4 frames or less from si,
while, depending on the signal, from 10 % to 15 % of the selected
frames are at a distance larger than 20 frames.

To get a better idea of the performance of the algorithm, we
increased the duration of the missing intervals, with a fixed ratio
of 50% missing data. This means that for a 4 seconds signal, 2
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Fig. 4. Average SNRfull (left) and SNRm (right) as a function of
the percentage of missing samples.

seconds are missing which is considerably high. Results are given
in Figure 5. The missing duration varies between 0.25 ms and 4 ms.
The S-OMP inpainting algorithm outperforms both the state-of-the-
art OMP G and OMP F between 0.25 and 2 ms and start to fail for
very large intervals.
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Fig. 5. Average SNRm for varying missing intervals durations

5. CONCLUSION

In this work, we have proposed a non-local similarity joint-sparse
modeling framework for audio inpainting. A focus has been ded-
icated to the choice of an appropriate similarity measure, showing
that the correlation measure used in image processing should be
avoided. Proof-of-concept experiments on a restricted set of signals
have illustrated the behavior of the proposed method, showing that
it can outperform purely-local sparse inpainting strategies in a larger
range of difficulty in audio inpainting problems. They also suggest
that only a few number of similar frames are necessary to improve
performance.

Those results would now require a larger exploration of the use
of non-local structures in sparse models for audio inpainting: com-
paring S-OMP and other joint-sparse algorithms [7, 8], on various
problems including, e.g., declipping, and on more data.
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