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ABSTRACT

In this paper, we propose a maximum-likelihood online diarization
method based on a probabilistic spatial dictionary. This dictionary
consists of the given probability distribution of spatial features for
each possible direction of arrival (DOA) of source signals. Recently,
we have developed an online, noise-robust diarization method by
utilizing this dictionary as spatial prior information. In this method,
DOA estimation is first performed frame-wise based on the dictio-
nary, and subsequently diarization is performed. Although the DOA
estimation is performed optimally in the maximum-likelihood sense,
the diarization is performed suboptimally based on some heuristics.
In contrast, the proposed method performs DOA estimation and di-
arization jointly and optimally in the maximum-likelihood sense.
This is realized by introducing a categorical mixture model (CMM),
which has source-wise DOA information and diarization informa-
tion as unknown parameters. We conducted an experiment on a
real-world meeting dataset, and confirmed that the proposed method
reduced a diarization error rate by absolute 2.7% compared to the
above conventional method.

Index Terms— Microphone array signal processing, speaker di-
arization, maximum-likelihood method.

1. INTRODUCTION

Automatic speech recognition (ASR) can work quite well when the
desired speaker speaks in proximity to the microphones. However,
when the speaker speaks at a distance from the microphones, the
ASR performance degrades significantly. We are conducting re-
search that aims to realize accurate ASR even in such a setting.

Specifically, this work aims to realize ASR in a meeting situa-
tion in which multiple speakers are conversing spontaneously at a
distance from the microphones. In such a situation, there are many
obstacles to accurate ASR, such as reverberation, speech overlap,
and background noise. To deal with these obstacles, diarization and
speech enhancement are crucial, and we focus on the former in this
paper.

Diarization refers to the estimation of the speech intervals of
each speaker, i.e., the estimation of who spoke when. Such informa-
tion is rarely available in real-world meetings, and therefore needs
to be estimated from observed signals. Diarization is crucial not
only to exclude noise-only segments and give speaker labels in the
back-end but also to stabilize the adaptation of the beamformer for
each speaker in the front-end [1]. Although diarization has been ad-
dressed by many researchers [2–5], it still remains to be an important
research topic, especially with distant microphones in noisy environ-
ments. Furthermore, although it may be relatively easy to improve

diarization performance for batch processing, online processing abil-
ity is compromised in that case.

Recently, we have proposed an online, noise-robust diarization
method based on a probabilistic spatial dictionary [1, 6]. In this
method, we prepare a probabilistic spatial dictionary composed of
the given probability distribution of spatial features for each possi-
ble DOA. Here, we assume that each of the source signals (includ-
ing the speech signals and the background noise) arrives from one
of predetermined DOA candidates, which we call possible DOAs.
The dictionary enables online, noise-robust diarization by providing
spatial prior information. In this method, DOA estimation is first
performed frame-wise based on the dictionary, and subsequently di-
arization is performed based on it. Although the DOA estimation is
performed optimally in the maximum-likelihood sense, diarization
is performed suboptimally based on some heuristics.

In this paper, we propose a novel diarization method based on
the probabilistic spatial dictionary. Unlike the conventional method,
the proposed method performs DOA estimation and diarization
jointly and optimally in the maximum-likelihood sense. This is
realized by introducing a categorical mixture model (CMM), which
has source-wise DOA information and diarization information as
unknown parameters.

We follow the following conventions throughout the rest of this
paper. Signals are represented in the short-time Fourier transform
(STFT) domain with the time and the frequency indices being t and
f respectively. T denotes the number of frames, and F the number
of frequency bins up to the Nyquist frequency, (·)T transposition,
and φ the empty set.

2. CONVENTIONAL METHOD
This section describes the conventional diarization method [1, 6]
based on the probabilistic spatial dictionary.

Figure 1 shows the processing flow of the conventional method.
The input data are signals observed at M (≥ 2) microphones in
the presence of multiple speakers along with background noise and
reverberation. These observed signals are represented by an M -
dimensional complex vector ytf in the STFT domain, which we re-
fer to an observation vector. The output is the diarization result rep-
resented by a binary variable d(n)

t , which equals 1 if the nth speaker
is speaking in the tth frame and 0 otherwise.

2.1. Feature Extraction
A spatial feature vector ztf is extracted at each time-frequency point.
An example of such a feature vector is given by

ztf =
ytf

‖ytf‖2 , (1)

546978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



Fig. 1. Processing flow of the conventional diarization method [1,6].

Fig. 2. Processing flow of the proposed diarization method.

where ‖ · ‖2 denotes the Euclidean norm (see [1]).
2.2. Probabilistic Spatial Dictionary
We assume that each of the source signals (including the speech sig-
nals and the background noise) arrives from one of predetermined
DOA candidates, which we call possible DOAs. The possible DOAs
can be represented by the indices 1, 2, . . . ,K, where K is assumed
to be much larger than the number of speech signals, N . We also
regard diffuse noise from all directions as a possible DOA, and rep-
resent it by the index 0. This enables us to model diffuse noise ex-
plicitly to realize accurate diarization even in the presence of diffuse
noise.

In this method, we prepare a probabilistic spatial dictionary
composed of the given probability distribution q

(k)
f of the feature

vector ztf for each possible DOA k ∈ {0, 1, . . . ,K} and each fre-
quency bin f ∈ {1, 2, . . . , F}. For example, for the feature vector
in (1), the dictionary can be prepared as follows [1]. The distribution
q
(k)
f is modeled by a complex Watson distribution [7, 8]

q
(k)
f (ztf ) = W(ztf ;a

(k)
f , κ

(k)
f ), (2)

where a
(k)
f is a centroid parameter and κ

(k)
f is a concentration

parameter. These parameters are prepared as follows. For k =
1, 2, . . . ,K, they are pre-trained on training data composed of a
real-recorded source signal from each possible DOA. To model dif-
fuse noise, we set κ(0)

f at zero and a
(0)
f at an arbitrary unit vector,

for which (2) reduces to the uniform distribution. See [9] for more
details of dictionary preparation.

2.3. Probabilistic Model of Feature Vector Based on Probabilis-
tic Spatial Dictionary
The probability distribution of the feature vector ztf is modeled by a
mixture model composed of the distributions q(k)f in the probabilistic
spatial dictionary:

p(ztf ) =
K∑

k=0

λ
(k)
t q

(k)
f (ztf )︸ ︷︷ ︸
dictionary

. (3)

Since the DOAs are unknown, the mixture weight λ(k)
t is assumed to

be unknown. In the conventional method, no constraint is imposed
on λ(k)

t except the trivial one:

K∑
k=0

λ
(k)
t = 1. (4)

We call the mixture weight λ(k)
t a frame-wise DOA probability. It

is the probability of the observed signals in the tth frame arriving
from the kth possible DOA. The estimation of λ(k)

t corresponds to
frame-wise DOA estimation.

An assumption underlying (3) is sparseness: each of the source
signals has non-zero power only at a small percentage of time-
frequency points. Based on this, the observation vector ytf at each
(t, f) is assumed to be composed of one source signal only. This
implies that, at each (t, f), the sound arrives from only one DOA,
which is represented by a DOA index ktf in the following.

On the above assumptions, the feature vector ztf can be con-
sidered to be generated by the following generative process. First,
the DOA index ktf is generated from the categorical distribution
P (ktf = k) = λ

(k)
t . Then, under the condition ktf = k, the fea-

ture vector ztf is generated from the conditional distribution p(ztf |
ktf = k) = q

(k)
f (ztf ). It is straightforward to confirm that this

generative process leads to the mixture model (3).
In practice, the background noise may not be sparse so that it

has non-zero power at all time-frequency points. In this case, the ob-
servation vector ytf is composed of one speech signal plus the back-
ground noise if ktf ≥ 1, and only the background noise if ktf = 0.
Therefore, (3) may be invalid in an extremely noisy environment,
but still (3) remains approximately valid for a moderate noise level.
This is because the background noise is negligible as compared to
the speech signal present at each (t, f) for a moderate noise level.

2.4. DOA Estimation
The frame-wise DOA probability λ

(k)
t in (3) is unknown and es-

timated in the maximum-likelihood sense. Specifically, it is esti-
mated by maximizing the likelihood function

∏T
t=1

∏F
f=1 p(ztf )

based on an EM algorithm, in which an E step and an M step are
alternated until convergence. The E step updates the posterior distri-
bution ζ(k)tf � P (ktf = k | ztf ) of the DOA index ktf based on the
current estimate of λ(k)

t by

ζ
(k)
tf ← λ

(k)
t q

(k)
f (ztf )

K∑
k′=0

λ
(k′)
t q

(k′)
f (ztf )

. (5)

The M step updates λ(k)
t so as to maximize an auxiliary Q function

by

λ
(k)
t ← 1

F

F∑
f=1

ζ
(k)
tf . (6)

It is theoretically guaranteed that this EM algorithm increases the
likelihood function monotonically.

Alternatively, the gradient method can also be employed instead
of the EM algorithm [1].

2.5. Diarization
Once the frame-wise DOA probability λ

(k)
t is obtained as in Sec-

tion 2.4, diarization can be performed as follows.
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First, peak picking of λ(k)
t is performed in each frame t. That

is, the DOA indices k that locally maximize λ(k)
t in the range 1 ≤

k ≤ K (i.e., with the noise DOA index k = 0 excluded) are de-
tected. The detected DOA indices k are regarded as the DOAs of
the source signals present in the frame t, and collected in a set Rt ⊂
{1, 2, . . . ,K}.

Second, diarization is performed based on frame-wise classifi-
cation of the detected DOA indices in Rt into source classes. The
speaker location for each speaker is assumed to be given, which
makes this classification straightforward. In each frame, the speaker
n is considered to be speaking, if the nth source class is non-empty.
The diarization result is stored in the variable d(n)

t .

2.6. Discussion
The conventional method first estimates the frame-wise DOA prob-
ability λ

(k)
t , and then performs DOA detection and diarization.

Although λ
(k)
t is estimated optimally in the maximum-likelihood

sense, the DOA detection and the diarization are performed sub-
optimally based on some heuristics. This motivates the proposed
method described in the next section.

3. PROPOSED METHOD
In this section, we describe the proposed diarization method. Unlike
the conventional method, the proposed method estimates source-
wise DOA information β(n,k) and diarization information α

(n)
t

jointly and optimally in the maximum-likelihood sense. This is
realized by modeling the frame-wise DOA probability λ(k)

t by a cat-
egorical mixture model (CMM) parametrized by β(n,k) and α(n)

t . In
Section 4, we show through an experiment that the proposed method
outperforms the conventional method in terms of a diarization error
rate.

Figure 2 shows the processing flow of the proposed method. The
input and the output are the same as in the conventional method in
Fig. 1. The feature extraction procedure and the probabilistic spatial
dictionary are also the same as in the conventional method.

In the following, we focus on the main differences from the con-
ventional method: the probabilistic model of the feature vector (Sec-
tion 3.1), the parameter estimation procedure (Section 3.2), and the
diarization procedure (Section 3.3). We also describe online imple-
mentation of the proposed method (Section 3.4).

3.1. Probabilistic Model of Feature Vector Based on Probabilis-
tic Spatial Dictionary and Categorical Mixture Model

In the conventional method, the frame-wise DOA probability λ
(k)
t

is unconstrained except for (4). In contrast, the proposed method
models it by

λ
(k)
t =

N∑
n=0

β(n,k)α
(n)
t . (7)

Here, α(n)
t and β(n,k) are unknown parameters. The index n ∈

{0, 1, · · · , N} is the source index, which corresponds to a speech
signal for n ≥ 1, and the background noise for n = 0. N de-
notes the number of speakers. The parameter α(n)

t is the presence
probability of the nth source signal in the tth frame, which satis-
fies

∑N
n=0 α

(n)
t = 1. The parameter α(n)

t is called a frame-wise
source presence probability (SPP), and can be regarded as the di-
arization information. The parameter β(n,k) is the probability of the
nth source signal arriving from the kth possible DOA, which we call
a source-wise DOA probability. It satisfies

∑K
k=0 β

(n,k) = 1. It can
be easily confirmed that λ(k)

t in (7) satisfies (4).

Fig. 3. In the proposed method, the frame-wise DOA probabilities
(matrix Λ) are modeled by the matrix product of the source-wise
DOA probabilities (matrixB) and the frame-wise SPPs (matrixA).

Equation (7) can be rewritten in matrix form as follows (see
Fig. 3):⎛

⎜⎜⎝
λ
(0)
1 · · · λ

(0)
T

...
. . .

...
λ
(K)
1 · · · λ

(K)
T

⎞
⎟⎟⎠

︸ ︷︷ ︸
Λ

=

⎛
⎜⎝

β(0,0) · · · β(N,0)

...
. . .

...
β(0,K) · · · β(N,K)

⎞
⎟⎠

︸ ︷︷ ︸
B

⎛
⎜⎜⎝

α
(0)
1 · · · α

(0)
T

...
. . .

...
α
(N)
1 · · · α

(N)
T

⎞
⎟⎟⎠

︸ ︷︷ ︸
A

. (8)

This is the same model as in the PLSA (probabilistic latent semantic
analysis) [10], which is a variant of the NMF (non-negative matrix
factorization) [11]. Equation (8) can also be regarded as a categor-
ical mixture model (CMM), which can be seen by rewriting (8) as
follows: ⎛

⎜⎜⎝
λ
(0)
t

...
λ
(K)
t

⎞
⎟⎟⎠ =

N∑
n=0

α
(n)
t

⎛
⎜⎝

β(n,0)

...
β(n,K)

⎞
⎟⎠ .

︸ ︷︷ ︸
categorical distribution

(9)

By plugging (7) in (3), we obtain the proposed probabilistic
model as follows:

p(ztf ) =

K∑
k=0

N∑
n=0

β(n,k)α
(n)
t︸ ︷︷ ︸

CMM

q
(k)
f (ztf )︸ ︷︷ ︸
dictionary

. (10)

The generative process behind (10) is as follows. First, a source in-
dex ntf indicating the source signal present at (t, f) is generated
from the categorical distribution P (ntf = n) = α

(n)
t . Second, un-

der the condition ntf = n, the DOA index ktf is generated from the
conditional distribution P

(
ktf = k | ntf = n

)
= β(n,k). Finally,

under the condition ktf = k, the feature vector ztf is generated
from the conditional distribution p(ztf | ktf = k) = q

(k)
f (ztf ).

The model (10) can be easily derived from this generative model.
As we will describe in Section 3.2, the parameters α(n)

t and
β(n,k) in (10) are estimated in the maximum-likelihood sense. The
estimation of α(n)

t corresponds to diarization, and the estimation

548



Fig. 4. Experimental setting.

of β(n,k) corresponds to DOA estimation. Furthermore, time-
frequency masks can also be obtained based on these parameters as
follows:

P (ntf = n | ztf ) =

K∑
k=0

α
(n)
t β(n,k)q

(k)
f (ztf )

N∑
n′=0

K∑
k=0

α
(n′)
t β(n′,k)q

(k)
f (ztf )

. (11)

These can be utilized for further processing such as mask-based
beamforming [1], although here we focus on diarization, which uti-
lizes α(n)

t only.

3.2. Parameter Estimation
The parameters α(n)

t and β(n,k) are estimated based on the EM al-
gorithm. This corresponds to joint DOA estimation and diarization.
The E step updates the posterior distribution γ

(n,k)
tf � P (ntf =

n, ktf = k | ztf ) based on the current estimates of α(n)
t and β(n,k)

by

γ
(n,k)
tf ← α

(n)
t β(n,k)q

(k)
f (ztf )

N∑
n′=0

K∑
k′=0

α
(n′)
t β(n′,k′)q

(k′)
f (ztf )

. (12)

The M step updates α(n)
t and β(n,k) so as to maximize an auxiliary

Q function by

α
(n)
t ← 1

F

F∑
f=1

K∑
k=0

γ
(n,k)
tf , (13)

β(n,k) ←

T∑
t=1

F∑
f=1

γ
(n,k)
tf

K∑
k′=0

T∑
t=1

F∑
f=1

γ
(n,k′)
tf

. (14)

3.3. Thresholding

As already pointed out, the frame-wise SPP α(n)
t can be regarded as

diarization information. The diarization result d(n)
t is obtained by

applying a predetermined threshold to α(n)
t (1 ≤ n ≤ N).

3.4. Online Implementation
This section describes online implementation of the above EM algo-
rithm. Equations (12) and (13) along with the feature extraction and
the diarization procedures can be performed frame-wise. In contrast,

Table 1. Diarization error rate.
session ID conventional [6] proposed

20141208 ses03 27.7% 24.8%
20141208 ses04 24.8% 20.9%
20141208 ses05 17.2% 13.0%
20141208 ses06 18.9% 19.8%
20141216 ses02 9.3% 8.8%
20141216 ses03 12.2% 9.8%
20141217 ses02 15.6% 13.8%
20141217 ses03 18.9% 12.3%

average 18.1% 15.4%

(14) cannot be computed frame-wise, because it involves temporal
summation.

To make (14) computable frame-wise, note that (14) can be
rewritten as

β(n,k) ←

〈
F∑

f=1

γ
(n,k)
tf

〉
K∑

k′=0

〈
F∑

f=1

γ
(n,k′)
tf

〉 , (15)

where 〈·〉 denotes temporal averaging. We replace the average
〈∑F

f=1 γ
(n,k)
tf 〉 in (15) by a moving average μ(n,k)

t :

β
(n,k)
t ← μ

(n,k)
t

K∑
k′=0

μ
(n,k′)
t

. (16)

The moving average μ(n,k)
t is updated frame-wise by

μ
(n,k)
t ← (1− δ)μ

(n,k)
t−1 + δ

F∑
f=1

γ
(n,k)
tf . (17)

Here, δ is the forgetting factor.

4. DIARIZATION EXPERIMENT
We conducted a diarization experiment on a real-world meeting
dataset [6]. Figure 4 depicts the recording setting for the dataset.
Four to six speakers conversed at a table in a meeting room, which
was recorded by an eight-channel microphone array on the table.
Background noise was simulated by playing babble noise from ten
loudspeakers outside the room. See [6] for the details of the dataset.
The proposed method and the conventional method [6] based on the
probabilistic spatial dictionary were compared. The feature vector
in (1) was used. The dictionary was designed as in the example in
Section 2.2.

Table 1 shows the diarization error rate (DER) [12] for each ses-
sion. In average, the proposed method reduced the DER by 2.7%
compared to the conventional method.

5. CONCLUSIONS
In this paper, we proposed a diarization method based on the prob-
abilistic spatial dictionary and the categorical mixture model. The
proposed method estimates source-wise DOA information and
diarization information jointly and optimally in the maximum-
likelihood sense. In the experiment, the proposed method reduced
the DER by absolute 2.7% compared to the conventional method [6].

Future work includes application of the proposed approach to
meeting speech enhancement.
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