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ABSTRACT

In this paper, we propose an iterative deep neural network
(DNN)-based binaural source separation scheme, for recov-
ering two concurrent speech signals in a room environment.
Besides the commonly-used spectral features, the DNN also
takes non-linearly wrapped binaural spatial features as input,
which are refined iteratively using parameters estimated from
the DNN output via a feedback loop. Different DNN struc-
tures have been tested, including a classic multilayer percep-
tion regression architecture as well as a new hybrid network
with both convolutional and densely-connected layers. Ob-
jective evaluations in terms of PESQ and STOI showed con-
sistent improvement over baseline methods using traditional
binaural features, especially when the hybrid DNN architec-
ture was employed. In addition, our proposed scheme is ro-
bust to mismatches between the training and testing data.

Index Terms— Deep neural network, binaural blind
speech separation, spectral and spatial, iterative DNN

1. INTRODUCTION

Deep neural networks (DNN) [1] have recently been exploited
in the field of blind source separation [2], e.g., to extract target
speech corrupted by background noise [3–7] or to jointly es-
timate multiple sound sources [8–11]. Monaural source sep-
aration methods often employ spectral features such as time-
frequency (TF) domain representative features and filterbank
features [3–5,7–9,11], while multiple channel source separa-
tion methods can exploit additional spatial information, e.g.,
to directly feed the DNN [6] or to refine the Wiener filtering
for recovering sources [10].

In this paper, we focus on the speaker-independent bin-
aural source separation problem where two talkers are speak-
ing concurrently at unknown positions. Existing DNN-based
multi-channel source separation methods often aim to recover
one target (after delay-and-sum beamforming) at the azimuth
of 0 degree, in the presence of uncorrelated ambient noise
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Fig. 1: Diagram of our proposed iterative DNN. Parameters τ̂i and
∆̂i(ω) used to calculate the converted spatial features, are initialised
from the binaural mixture (dashed line) and iteratively refined with
the DNN output (red line).

[6, 10]. In addition, the DNN models trained in [10] use only
spectral cues as DNN input. The fixed DNN training in [6]
does not consider the large number of spatial combinations of
two speakers, where distributions of the commonly-used spa-
tial cues differ under these combinations. To address these
limitations, we propose to transform the spatial features to a
uniquely-distributed space that is robust to different spatial
combinations. This transformation process requires position-
associated delay information, which can be obtained from the
binaural mixture and refined from the DNN output with an
iterative process. The refinement process uses similar opti-
misation principles of stochastic depth [12]. The pre-trained
neural network outputs spectral features for the reconstruction
of estimated sources in the time-domain.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the overall proposed scheme, followed by
experimental results and analyses in Section 3. Conclusions
and insights for future work are given in Section 4.

2. THE PROPOSED METHOD

Our proposed binaural source separation scheme is shown in
Fig. 1, where the DNN takes both spectral and spatial features
as input and then outputs the spectra of two source estimates.

Suppose L(t, ω) and R(t, ω) are the short time Fourier
transform (STFT) of the two channels in the binaural record-
ings indexed by the TF location (t, ω). Log-power (LP)
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features LLP(t, ω) = log(|L(t, ω)|2) can be extracted, which
have proven effective in monaural speech enhancement [3,7].
The maximal value between the two channels is extracted as
the spectral feature, to reduce inter-channel redundancy:

ZLP(t, ω) = max(LLP(t, ω), RLP(t, ω)). (1)

Similarly, the groundtruth spectral feature SLP
i (t, ω), i = 1, 2

can be obtained from spatial images (contributions in both
channels) of each sound source.

Besides these spectral features, spatial features are also
considered in our system. Commonly used binaural spatial
features include interaural phase difference (IPD) and inter-
aural level difference (ILD), which can be either statistically
characterised [13] via an expectation maximisation (EM) pro-
cess, or used to boost the DNN spectral input directly [6].
In this pilot study, we exploit only the IPD cue φ(t, ω) =

∠L(t,ω)
R(t,ω) . Considering the potentially large number of scenar-

ios when two targets are combined in the binaural mixtures,
the IPD distributions become complex. We illustrate in the
top of Fig. 2 the distributions of φ(t, ω) calculated from mix-
tures containing two sound sources under two combination
scenarios: −30◦ + 45◦, −45◦ + 30◦. It can be observed that
the IPD distributions vary with frequency and combination
conditions. To represent the various IPD distributions under
all possible mixing conditions, a large neural network is re-
quired, which is prone to overfitting and needs a big training
set. To address this problem, we transform the IPD feature
with the prior information of the unwrapped IPD mean1 for
each sound source denoted as βi(ω), i = 1, 2:

χi(t, ω) = exp
(
−
∥∥(φ(t, ω)− βi(ω))|π−π

∥∥2
)
, (2)

which is a nonlinear wrapping of the squared phase residual
into the range of (0, 1). The 2D vector [χ1(t, ω), χ2(t, ω)]
shows joint distributions with a sparse pattern, robust to fre-
quency and combination conditions. In addition, data associ-
ated with different targets can be clustered to different groups,
as illustrated in the bottom of Fig. 2. As a result, the converted
features may facilitate DNN training.

In the supervised offline DNN training stage, the un-
wrapped IPD mean βi(ω) can be extracted directly from
spatial images of each target sound given the exact mixing
process, which is however unknown in the online DNN sep-
aration stage and thus needs to be estimated. Ideally, if the
right channel signal is a delayed version of the left channel by
delay τ , we could obtain βi(ω) = 2πfωτ , where fω = ωFs

NFFT

is the ω-th frequency with Fs being the sampling rate and
NFFT the FFT size. Due to reflections within the listening
environment as well as the head shadowing effect, the delay
for a sound from certain direction is in practice frequency-
dependent, and βi(ω) can be compensated by some angle

1The IPD mean can be constrained in the range of −π to π, which can
also be unwrapped to a wider range to maintain frequency consistency. This
unwrapping process does not affect Equation (2).
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Fig. 2: IPD distributions (top) and joint distributions of the converted
features (bottom) from mixtures consisting of two sound sources, at
different frequencies and position combinations. The binaural mix-
tures were simulated by convolving speech signals with associated
binaural room impulses [14] and adding them together. The IPD dis-
tribution (top) can be modelled with a Gaussian mixture model con-
taining two kernels associated with the two sound sources, whose
mean is frequency and position dependent [13]. The converted
features (bottom) yield very sparse distributions and 80% of time-
frequency points fall in the area enclosed by the contours.

shift ∆i(ω) with small values:

βi(ω) = 2πfωτi + ∆i(ω). (3)

When applying the trained DNN for online separation,
we need to estimate the dominant delay τ̂i and ∆̂i(ω) for
calculating βi(ω) associated with each sound source. The
generalized cross-correlation phase transform method (GCC-
PHAT) [15] can be employed to estimate τ̂i, while ∆̂i(ω) can
be initialised with zeros (dashed line in Fig. 1). Afterwards,
these parameters can be iteratively refined using the DNN-
separated signals Ŝi(t, ω) (red line in Fig. 1) as follows:

τ̂i = argmin
τ

∑
t,ω|(t,ω)∈Hi

∥∥(φ(t, ω)− 2πfωτ)|π−π
∥∥2
,

∆̂i(ω) =

∑
t|(t,ω)∈Hi

(φ(t, ω)− 2πfω τ̂i) |π−π∑
t|(t,ω)∈Hi

1
.

(4)

In the above equations,Hi is defined as

Hi = {(t, ω)}, s.t. ZLP(t, ω) > ε, Ŝi(t, ω) > Ŝī(t, ω), (5)

where ε is the median value of ZLP(t, ω), and ī denotes the
source index that does not equal to i. We enforce the con-
dition ZLP(t, ω) > ε to avoid using components with small
values that are prone to outliers; we enforce the condition
Ŝi(t, ω) > Ŝī(t, ω) to exploit information dominated by the
associated source. The minimisation can be simplified by it-
eratively updating τ̂i with a greedy method using candidate
values close to the previous optimal point.
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3. EXPERIMENTS

3.1. Data and setup

Recordings from four male speakers Mi and four female
speakers Fi, i = 1, ..., 4, in the TSP Speech Database [16]
were used to test our proposed scheme. The sampling rate is
16 kHz. For each speaker, 50 sequences were used for train-
ing and 10 for testing. We generated binaural mixtures using
binaural room impulse responses (BRIRs) recorded in a re-
verberant room with RT60 of 640 ms [14], by convolving two
randomly chosen signals with corresponding BRIRs and then
adding them together. In the training stage, we considered po-
sition combinations drawn from [−60◦,−30◦, 0◦, 30◦, 60◦]
when generating the binaural mixtures. To test the robustness
of our proposed method to unmatched combination scenarios,
two groups of testing data were simulated, with one group
using the same position combinations as the training data, and
the other group drawn from [−45◦, 5◦, 45◦]. Different gender
combinations of “MM”, “MF”, and “FF” were also investi-
gated. Under each location combination, e.g.−60◦+30◦, we
randomly chose two speakers, e.g. M1 and F2, and generated
50 (10) binaural mixtures from randomised training (testing)
data sequences. In total, 18000 binaural mixtures lasting
about 12 hours were generated for training, 3600 for matched
testing, and 1080 for unmatched testing. 20% of the training
binaural mixtures were used for validation. For each method
we implemented, a single speaker-independent network was
trained using the whole training data.

In our DNN implementations, the spectral and spatial fea-
tures (IPD) were extracted using a 512-point STFT with half-
overlapped Hamming windows. At each time frame t, fea-
tures from the neighbouring 11 frames were used to exploit
temporal correlation. The mean square error (MSE) was used
as the cost function. In the training process, the mini-batch
size was set to 128 in the backpropagation, and the training
data were randomized after each epoch.

We have tested two DNN architectures. The first one is
the classic multilayer perception (MLP) DNN [3, 6, 7]. In
our implementation, the MLP DNN has three hidden layers,
and each hidden layer contains 3000 leaky rectified linear
units (ReLU). We employed batch normalisation (BN) lay-
ers [17] after each densely-connected hidden layer to accel-
erate convergence. The second DNN has a hybrid structure
as shown in Fig. 3, which contains both convolutional layers
as well as densely-connected layers. Two parallel process-
ing streams were employed. One stream (top, local stream)
aims to learn local information, where convolutional layers
with strides of (1, 1) and zero-padding were used without any
pooling process. A similar structure has been shown useful
in maintaining details [18] in image super-resolution. The
other stream (bottom, global stream) aims to learn global re-
lationships, where convolutional layers with max pooling and
strides were used with zero-padding, followed by a densely-
connected layer. To combine the two streams together, the
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Fig. 3: The hybrid DNN architecture. The first and second dimen-
sions in each layer output are listed. For each convolutional layer, the
kernel size as well as the number, and the stride not equals to (1, 1)
are listed. Zero-padding (not shown) was used. Take the first con-
volutional layer in the local stream for example, kernel size of (5, 5)
was applied to input size of (255, 11) and output size of (255, 7),
which means the amount of zero-padding of 2 was enforced in the
borders of the first dimension. The two max-pooling layers have the
size of (2, 1) and (2, 2) respectively.

global stream output was reshaped and concatenated with the
local stream. More convolutional layers were tagged in the
end to generate the final result. Leaky ReLUs were employed
at each hidden layer. Residual learning [19] and BN were
used to ease the training.

Using the converted features as spatial features, we de-
note the proposed iterative DNN scheme with the above two
DNN structures as “Convert-MLP” and “Convert-Hybrid” re-
spectively. Note that, the same input feature for “Convert-
Hybrid” needs to be vectorised for “Convert-MLP”. Three
iterations were employed in the proposed DNN scheme to
refine the converted spatial features. We implemented two
baseline methods, by directly feeding the raw features of ZLP

and φ to the aforementioned DNNs, denoted as “Raw-MLP”
and “Raw-Hybrid”. In addition, we also used the method pro-
posed in [6], denoted as “Method [6]”, as a baseline, which
was slightly modified as follows. Instead of outputting the
ideal ratio mask associated with one target, the DNN output is
the LP spectra of both estimated sources, to be consistent with
all the other DNN methods. As with the other DNN methods,
features spanning 11 neighbouring frames were concatenated
as the DNN input.

3.2. Results and analysis

The converged DNN models were saved after 200 epochs.
DNN methods using the converted spatial features, i.e.
“Convert-Hybrid” and “Convert-MLP”, converged to simi-
lar results as “Method [6]” with a loss around 0.40. Methods
using raw features, i.e. “Raw-Hybrid” and “Raw-MLP”
exhibited higher loss of approximately 0.65 and 0.60 respec-
tively.

We then evaluated and compared the speech quality and
intelligibility of signals separated by the five approaches in
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Fig. 4: Quantitative evaluations on “matched” testing data (left) and “unmatched” testing data (right) in terms of PESQ (top) and STOI
(bottom). We ranked the two DNN outputs in each scenario based on their evaluated score, and plotted evaluation results for the first (best)
and second source estimates. For each scenario, the box has edges with 25th and 75th percentiles, as well as the median value (the central
cross mark), and the whiskers extend to the most extreme data points. Outliers are shown in black pluses.

terms of perceptual evaluation of speech quality (PESQ) [20],
and short-time objective intelligibility (STOI) [21]. We first
performed evaluations on “matched” testing data, as illus-
trated in the box-plots in Fig. 4 (left), where the evaluation
metrics were applied to each of the two source estimates.
The same evaluations were performed on the binaural mix-
tures without processing as a benchmark, denoted as “Input”,
i.e. by directly comparing the mixture with each of the two
groundtruth/reference signals. It can be observed that using
the proposed feature, either “Convert-Hybrid” or “Convert-
MLP” gained the best and consistent performance over dif-
ferent gender combinations, especially for “Convert-Hybrid”,
where the worst separated source still exhibited similar or
even better scores than the other three baseline methods. As
compared to “Input”, methods using the converted feature
showed consistent improvement in both PESQ and STOI, ex-
cept very slight decrease in STOI for the first separated signal
with “Convert-MLP” under the FF gender combination. The
three baseline methods also outperformed “Input” in MM
and MF scenarios, especially when evaluating the second
separated source. Yet, this advantage did not persist for the
first separated sound in STOI evaluations. It can be noted
that “Method [6]” showed worse performance than our pro-
posed methods in terms of PESQ and STOI, even though the
MSE loss in the training process showed similar convergence
performance. Informal listening revealed that “Method [6]”
suffered from severe distortions of the target and interfering
speech, compared to the methods based on the converted
IPD feature, with Convert-Hybrid sounding the most natural
among the methods tested. These results imply that the MSE
loss might not be the best choice of cost function to drive
speech quality.

To test the robustness of our proposed scheme to the
mismatch between the training and testing data, we also ran
the same evaluation process on “unmatched” testing data, as

illustrated in Fig. 4 (right). To compare with the matched
situations, we highlighted median values of the associated
matched conditions in black circles. It can be seen that us-
ing raw features, i.e. “Raw-Hybrid” and “Raw-MLP”, the
performance dramatically decreased, and worse results than
“Input” were obtained. Consistent results were observed with
converted features as compared to matched situations, prov-
ing the robustness of our proposed scheme. Interestingly for
“Method [6]”, very similar results were gained as compared
to the matched scenarios, which shows that their employed
features also exhibit robustness to mismatched conditions.
Overall, the proposed methods using the converted features,
i.e. “Convert-Hybrid” and “Convert-MLP”, still outperform
all the other baseline methods as well as direct evaluations on
the binaural mixtures in both PESQ and STOI.

4. CONCLUSIONS

An iterative DNN-based binaural source separation scheme
using converted features refined iteratively from the DNN
output has been proposed, to solve the problem of retrieving
two concurrent speech signals in a room environment. The
proposed scheme showed good performance in terms of per-
ceptual speech quality and speech intelligibility, especially
when the proposed hybrid DNN was employed. In addition,
our proposed scheme yielded robustness to position combi-
nation mismatch between the training and testing data. In the
future, we plan to use more advanced cost functions, that bet-
ter reflect the speech quality, in the DNN training. Also, we
need to generalise the situations for concurrently recovering
more than two sound sources. More comparisons should be
performed to other DNN structures, such as recurrent neural
networks. More evaluation metrics should be considered such
as signal to distortion ratio (SDR).
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