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ABSTRACT

Recently the mask-based beamforming approach received tremen-
dous interest and is widely studied for multi-channel noise robust
automatic speech recognition (ASR). Among the known mask esti-
mation models, the neural network based mask estimation approach
has received the most attention, resulting in a competitive perfor-
mance. However this approach still suffers from training-testing
mismatch between the simulated training and real test data. This
paper proposes a new unsupervised scheme that can utilize the real
data during NN-based mask estimator training. The clustering-based
approach is applied on the real data first to generate the soft masks,
which are then taken as the labels for NN-mask modeling. Moreover,
acoustic adaptation technologies are borrowed from usual back-end
acoustic modeling to the front-end NN-mask based beamformer, fur-
ther reducing the training-testing acoustic mismatch. The proposed
methods are evaluated on the CHIME-4 dataset. Experimental re-
sults show that the mismatch can be reduced significantly by the pro-
posed strategies, leading to relative ∼15.0% WER reduction com-
pared to the conventional NN-mask beamforming for the real data
under noisy conditions.

Index Terms— acoustic beamforming, time-frequency mask,
deep neural network, adaptation

1. INTRODUCTION

In recent years, significant progress has been achieved in automatic
speech recognition (ASR) due to the introduction of deep neural net-
works to acoustic modeling [1, 2]. The ASR systems based on deep
neural networks, still perform poorly in many real-world far-field
microphone scenarios. The main reasons for the poor performance
are background interferences, e.g. additive noise, channel distor-
tion and reverberation, which lower the SNR and degrade ASR per-
formance. Acoustic beamforming [3, 4, 5, 6] has been shown as a
helpful front-end approach to improve the system performance under
these conditions. While conventional beamforming approaches usu-
ally rely on inaccurate prior knowledge, such as an array geometry
or a plane wave assumption, time-frequency mask-based beamform-
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ing approaches do not need such extra knowledge, thus have been
widely studied in recent years [7, 8, 9, 10, 11, 12, 13, 14, 15].

An accurate estimation of time-frequency masks is important
in order to perform beamforming effectively. Most approaches
for mask estimation can be divided into two categories: (1) the
clustering-based approach [7, 9, 12] estimating masks in an un-
supervised mode, and (2) the neural network-based (NN-based)
approach [10, 11, 13, 14, 15] estimating masks with a trained neu-
ral network in advance. Both methods have achieved competitive
results on some tasks, e.g. CHiME-4 dataset [16]. The NN-based
method [10], although seemingly outperforming the clustering-
based method [9], may easily cause a mismatch between the training
and test conditions. The mismatch appears because a NN-based
mask estimator can only be trained with the parallel simulated data
while it is implemented for the real data. Therefore, the degree of
similarity between the simulated and real data as well as the differ-
ences in acoustic backgrounds between the training and testing will
have an impact on the performance of the NN-based approach for
real applications. In contrast, the clustering-based mask estimator
can be trained unsupervised and doesn’t need simulated data for
model construction, therefore no mismatch occurs.

Many attempts that take advantage of both NN-based and
clustering-based approaches for multi-channel noise reduction have
been proposed [17, 18]. [19] utilizes this integration idea to address
the mismatch problem. In that method, initial masks, first estimated
based on the NN-based approach, are utilized as the weight ini-
tializations for each cluster for the clustering-based mask estimator
training. This work aims to reduce the training-testing mismatch,
while focusing on optimizing the NN-based mask estimator. Two
main strategies are proposed. First, to make the NN-mask model
training applicable to real data, the soft mask labels of real data are
generated by the clustering-based mask estimator, so that both simu-
lated and real data can be utilized for NN-mask model optimization.
The unsupervised mode of the clustering-based mask estimator en-
ables us to generate additional real data for model training. Second,
these NN-based acoustic beamformers can further be improved by
commonly used speech recognition adaptation [20, 21, 22]. Acoustic
adaptation can further reduce the mismatch significantly. The pro-
posed approaches are evaluated on CHiME-4 dataset [16], leading
to promising results.

The rest of the paper is organized as follows. Section 2 briefly
reviews mask-based beamformers and two main techniques for
mask estimation. Section 3 and Section 4 describe the proposed
approaches in detail, including real data augmentation for NN-
mask training and adaptive NN-based acoustic beamformer. The
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experimental results are discussed in Section 5 and conclusions are
summarized in Section 6.

2. MASK-BASED BEAMFORMER

2.1. Mask-based beamforming

A noisy signal received from an array of M microphones is

Yf,t = Xf,t + Nf,t, (1)

where Yf,t, Xf,t and Nf,t represent the short-time Fourier trans-
forms (STFT) of the noisy signal, clean speech and noise respec-
tively. f and t denote frequency bin and time frame index.

A beamformer is designed to recover the clean speech by ap-
plying a linear filter wH

f to the observed noisy signal Yf,t. The
enhanced signal is given by

ŝf,t = wH
f Yf,t, (2)

where superscript H denotes conjugate transpose.

Fig. 1. Overview of mask-based beamforming.

Fig. 1 gives an overview of the mask-based beamformer. Firstly,
a speech maskM (X)

f,t and a noise maskM (N)
f,t are estimated and then

are used to calculate spatial covariance matrices of speech and noise
respectively.

Φννf =

T∑
t=1

M
(ν)
f,t Yf,tY

H
f,t, ν ∈ {X,N}. (3)

These spatial covariance matrices are used to compute beam-
forming coefficients wf . In this paper, we consider the generalized
eigenvalue (GEV) beamformer, which beamforming coefficients are
given by:

wgevf = argmax
wf

wH
f ΦXXfwf

wH
f ΦNNfwf

. (4)

Since the magnitude of each beamforming vector can be chosen
arbitrary, the Blind Analytic Normalization (BAN) [23] technique
can be used as a post-filter to reduce arbitrary distortions of the GEV
beamformer.

2.2. Clustering based mask estimation

Complex Gaussian mixture model (CGMM) proposed in [9] has
been show to be useful for mask based beamforming. This model as-
sumes that each frequency can be clustered into two categories with
different distributions, i.e. the noisy speech class and the noise-only
class. A two Gaussian components CGMM is built to model each
class’s frequency distribution (one Gaussian represents one class).
The estimated masks are the posteriors of each cluster at the cor-
responding time-frequency points. The parameters of CGMM are
estimated in an unsupervised way.

2.3. Neural network based mask estimation

The neural network for mask estimation proposed in [10] is com-
posed of a bidirectional long short-term memory (BLSTM) layer and
three feed-forward layers. The training target is ideal binary masks
(IBM) for speech and noise. In order to achieve the best result, man-
ual optimization of the target masks is required , such as the two
threshold thX and thN usage in [10]. In the test phase, the masks for
each channel are estimated by the trained neural network separately
and then combined to a single mask using a median operation.

3. REAL TRAINING DATA AUGMENTATION

This work focuses on the mismatch problem in NN-based mask es-
timation. Considering target mask labels are needed to train the
mask estimation network, parallel speech data, i.e. original clean
and simulated noisy speech, is required to prepare the needed mask
labels. The problem is that the parallel speech data can be obtained
by artificially generated data, but may not be available for real data
applications. This also means, that the NN-based mask estimator
can only be trained using simulated data, which may lead to a mis-
match when facing real test data. In order to reduce this kind of
mismatch, suitable methods for utilizing real training data are inves-
tigated. Therefore, the unsupervised CGMM-based mask estimator
[9] is introduced, which processes the original real data in order to
generate mask label estimates.

The left part of Fig.2 shows the scheme of real training data
augmentation. For the simulated data, the mask labels are calculated
from the corresponding clean speech and simulated noise. For the
real data, soft masks M (X)

f,t and M (N)
f,t for speech and noise, respec-

tively, are estimated by the CGMM on the real noisy data. Then,
these soft masks are used to form mask labels for NN training. Note
that the value of soft masks are real numbers within the range [0,1]
and M (X)

f,t +M
(N)
f,t = 1. Thus when training the NN-based mask

estimator, two kinds of mask labels can be used: ideal binary mask
(IBM) and ideal ratio mask (IRM).

The soft masksM (X)
f,t andM (N)

f,t can be directly used as IRM of
the real data for speech and noise respectively. The IBM of the real
data is defined as:

IBMX =

{
1,

Mf,t
(X)

Mf,t
(N) > 10thX ,

0, else.
(5)

IBMN =

{
1,

Mf,t
(X)

Mf,t
(N) < 10thN ,

0, else.
(6)

To achieve the best results, the two thresholds thX and thN are manu-
ally chosen to be different from each other. This procedure is similar
to the IBM usage in [10].

For IBM, we use the binary cross-entropy cost described in [10]
to train the network, and for IRM, the mean squared error (MSE) be-
tween the inferred mask prediction and the target IRM label is used
as the loss function. Note that the structure of the neural network
based mask estimator in this work is the same as the one in [10],
including a BLSTM layer followed with three feed-forward layers.
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Fig. 2. Overview of the proposed schemes.

4. ADAPTIVE NEURAL NETWORK BASED ACOUSTIC
BEAMFORMER

To deal with the mismatch arisen from acoustic backgrounds, e.g.
variation in speakers and environments, adaptation techniques are
usually applied on the acoustic model to improve the ASR perfor-
mance. Motivated by the success from acoustic modeling, this work
tries to implement adaptation on the mask estimators to obtain an
adaptive acoustic beamformer.

The right part of Fig.2 shows the flow chart of our proposed
adaptive neural network based beamformer. In the first pass of
unsupervised adaptation, CGMM-based mask estimator is utilized
to generate the soft masks Mf,t

(X) and Mf,t
(N) on the test data.

Then, these soft masks can be used as labels for either IBM or IRM
mode. After that, the original speaker-independent (or environment-
independent) NN-mask estimator can be adapted on the speaker-
dependent (or environment-dependent) test data in the second pass.
Three types of NN-based adaptation approaches are investigated for
the NN-mask based acoustic beamformer on speaker level in this
work.

4.1. BLSTM re-training approach

Re-training [20] is a simple and intuitive adaptation technique that
uses the predicted mask labels to re-train the entire neural network
for each speaker. In this work, the entire network is re-trained, in-
cluding a BLSTM layer and three feed-forward layers on speaker-
level.

4.2. Linear input network (LIN) for BLSTM

Linear input network (LIN) [21] applies a linear transformation
specified by the weight matrix WLIN ∈ RN0×N0 and the bias vector
bLIN ∈ RN0 to the input features vector x ∈ RN0 as

xLIN = WLINx + bLIN, (7)

whereN0 is the size of input feature. In this work, the individual LIN
linear layer for each speaker is added before the BLSTM network.
The parameters of LIN layer are initialized with identity weight ma-
trix and zero bias. LIN are updated in adaptation stage while the rest
of the model is fixed.

4.3. Learning hidden unit contributions (LHUC) for BLSTM

For speakerm, a set of speaker-dependent parameters rm are defined
for the first feed-forward hidden layer [22] of the original trained
BLSTM, where rm ∈ RM , M is the size of the hidden layer. Then
the output of the first feed-forward layer hm can be modified as

hLHUC
m = a(rm) ◦ hm, (8)

where ◦ is an element-wise multiplication, and a(·) is a sigmoid with
amplitude 2 that constrains the range of rm within [0,2]. rm is ini-
tialized with zero value. In this case, a(rm) is set to 1.0, and the
modified model is equivalent to original trained model. rm is up-
dated discriminatively by back propagating the error with the origi-
nal BLSTM parameters fixed.

5. EXPERIMENTS

The CHIME-4 challenge dataset [16] is used to evaluate the pro-
posed approaches. The dataset consists of real and simulated audio
data of prompts taken from the 5k WSJ0-Corpus [24] with four dif-
ferent environmental noise recordings. In this work we only con-
sider the 6ch-track. The training set consists of 1600 real and 7138
simulated utterances. The development and evaluation sets comprise
3280 and 2640 utterances, respectively, both including simulated and
real data.

5.1. Experimental Setups

In our experiments, different mask estimation approaches are com-
pared using the same GEV+BAN beamformer (see Section 2.1).
The same standard back-end ASR provided by the 4th CHiME chal-
lenge is directly used, which is composed of a DNN-HMM acous-
tic model trained with sMBR and a combination of a 5-gram and
recurrent neural network language model rescoring [16]. Three tra-
ditional mask estimators served as baselines are built first, shown
in Table 1, including a CGMM estimated from each test utterance,
and two BLSTM trained on all simulated training data with IBM or
IRM labels. The toolkit used in [10] is utilized to train the BLSTM
mask estimator. It is noted that all BLSTM networks are initialized
with same parameters for a cogent comparison of our proposed ap-
proaches. The results show that the baseline NN-mask based beam-
forming outperforms the CGMM-based method on the real data.
Further, utilizing IRM mask labels leads to a slightly better result
compared to the IBM usage.
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Table 1. Baseline: Average WER (%) for using different
mask estimators on the CHiME-4 development set (dt 05) and
evaluation set (et 05).

Mask estimator dev eval
real simu real simu

CGMM 5.47 4.76 8.66 5.72
BLSTM-IBM 5.06 5.03 7.56 6.36
BLSTM-IRM 4.63 4.97 6.79 6.59

5.2. Evaluation on real training data augmentation

Real training data augmentation for NN-based mask modeling is
evaluated. The real data in the CHiME-4 training set is firstly pro-
cessed with CGMM-based mask estimator, so that these real data
with the soft masks can be pooled with simulated data together for
NN-mask model training. Both IBM and IRM labels were evalu-
ated on the experiments, which results are displayed in Table 2. It
is observed that introducing real data with CGMM-estimated soft
masks for the BLSTM-mask beamformer modeling outperforms the
baselines trained only on the simulated data. The improvement on
the real test condition is particularly larger, while the gain on the
simulated test condition is small or even slightly decreased. Since
the mismatch between the original simulated training and test con-
ditions is small, adding real data in training actually increases the
mismatch for the simulated test condition. In contrast, adding real
training data for model optimization can reduce the mismatch on the
real test condition, thus contributes to a better performance for real
applications. Consistent with the results in Table 1, the IRM usage
still outperforms the IBM usage. Based on these results, augmented
real training data with IRM labels are used in the following experi-
ments.

Table 2. Average WER (%) comparison of different training
data usages for BLSTM-mask beamformer.

Target Training-data dev eval
real simu real simu

IBM
SIMU 5.06 5.03 7.56 6.36

SIMU + REAL 4.73 4.96 6.88 6.24

IRM
SIMU 4.63 4.97 6.79 6.59

SIMU + REAL 4.59 4.83 6.51 6.61

5.3. Evaluation on adaptive neural network based acoustic
beamformer

For adaptation experiments, we compared the performance of three
different adaptation methods, i.e. re-training, LIN and LHUC as
described in Section 4. The CGMM-based mask estimator is used
in the first pass to generate the soft mask labels for the test data.
After obtaining the soft labels, the NN-mask model is adapted for
each speaker. The results are illustrated in Table 3. It shows that
the proposed adaptive NN-based beamformer, using LIN or LHUC
structure, can obtain significant gains on almost all test conditions
compared to the normal unadaptive beamformer. In contrast, the
re-training approach’s ability to enhance the performance is limited.

This promising result further demonstrates, that the acoustic mis-
match can be significantly reduced by the proposed adaptive neu-
ral network based front-end beamformer. The proposed new beam-
former using both data augmentation and adaption can obtain rel-
ative ∼15.0% WER reduction compared to the conventional NN-
mask beamforming [10] for the real data.

Table 3. Average WER (%) comparison of different adaptive
BLSTM-mask beamformers.

Adaptation dev eval
real simu real simu

— 4.59 4.83 6.51 6.61
retraining 4.59 4.93 6.42 6.60

LIN 4.28 4.83 6.38 6.27
LHUC 4.35 4.70 6.17 6.22

Finally, an investigation whether the adaptation benefits on the
front-end beamformer is exclusive to the usual adaptation gain on the
back-end acoustic modeling is carried out. The proposed adaption
technique is performed on both front-end beamformer and back-end
acoustic model. Results are shown in Table 4. It shows that signifi-
cant improvements can be obtained no matter adaption is performed
on front-end or back-end. The adaptation in these two stages are
not exclusive. Moreover, the system applied the adaptation on both
beafmormer and acoustic model can get an additional gain on all test
conditions.

Table 4. Average WER (%) comparison of adaptation
technologies applied on front-end beamformer and back-end
acoustic modeling.

BF-adapt AM-adapt dev eval
real simu real simu

× × 4.59 4.83 6.51 6.61
×

√
4.11 4.12 5.48 4.98√

× 4.35 4.70 6.17 6.22√ √
3.83 3.98 5.16 4.83

6. CONCLUSION

Inspired by the training-testing mismatch problem for the NN-mask
based beamforming algorithm arisen from the simulated training and
real testing data, several strategies are proposed, including real train-
ing data augmentation and adaptive NN-mask beamformer develop-
ment. In order to enable the system to utilize the real training data
in NN-mask estimator training, the unsupervised clustering-based
model is applied on the real data first to generate the soft masks, so
that the real data can be pooled with the simulated data for NN-mask
modeling. Adding real training data can reduce the training-testing
mismatch obviously. Moreover, for the first time, adaptation tech-
niques are performed on this front-end NN-mask based beamformer,
leading to a further improvement of the system performance. An-
other finding is that the adaptation benefits on the front-end beam-
former and back-end acoustic modeling are not exclusive, thus by
adapting the system on both two stages, an additional gain on all
testing condition on CHiME-4 has been demonstrated.
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