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ABSTRACT

Beamforming approaches using time-frequency masks have
recently been investigated and have shown promising results
for noise robust automatic speech recognition (ASR) in many
tasks. The time-frequency masks are estimated to compute
the spatial statistics of target speech and noise signals, and
then the statistics are used to derive a beamformer. Although
its effectiveness has been clearly shown in batch and block-
wise processing, it has not been well extended to frame-by-
frame processing, which is a very important procedure for
many actual applications. In this paper, we derive a frame-
by-frame update rule for a mask-based minimum variance
distortion-less response (MVDR) beamformer, which enables
us to obtain enhanced signals without a long delay by com-
bining it with uni-directional recurrent neural network-based
mask estimation. Based on the Woodbury matrix identity, our
algorithm achieves a closed-form solution of the mask-based
MVDR beamformer at every time frame without any matrix
inversion. Experimental results show that our frame-by-frame
beamformer outperforms baseline block-wise beamforming
on the CHiME-3 simulation dataset even with a shorter time
delay.

Index Terms— Speech enhancement, beamforming, on-
line processing, time-frequency masking

1. INTRODUCTION

Beamforming is a key technique for speech enhancement and
noise robust automatic speech recognition (ASR). In a beam-
forming scenario, beamformer coefficients are multiplied by
multichannel observed signals at each frequency to obtain en-
hanced signals. For effective beamforming, it is important to
estimate appropriate beamformer coefficients.

One approach that can be used to obtain the beamformer
coefficients is to parameterize neural networks with the co-
efficients as in [1]. The coefficients are regarded as some of
parameters of the neural networks, i.e., an acoustic model of
an ASR system, and are trained on multichannel training data.
Another approach is to estimate the coefficients with the neu-
ral networks [2, 3], where the neural networks estimate the
real and imaginary parts of the coefficients from multichannel
input features. However, these approaches cannot be applied

to multichannel signals recorded with a different microphone
array since the number of neural network parameters depends
on the number of microphones.

On the other hand, a mask-based beamforming approach
achieves a microphone array independent system by exploit-
ing time-frequency masks [4–8]. First, the single channel
time-frequency masks are estimated to allow us to com-
pute spatial statistics with the multichannel observed signals.
Then, the statistics can be used to obtain the beamformer
coefficients. Several approaches can be employed to obtain
the coefficients from the statistics including the max-SNR
beamformer [4], and the minimum variance distortion-less
response (MVDR) beamformer [5].

The effectiveness of the mask-based beamformer for
speech enhancement and noise robust ASR has been de-
scribed in many articles, however, previous investigations
employed batch processing and block-wise processing. For
practical applications, it is very important to obtain enhanced
signals with a short time delay, and so it is worth investigating
frame-by-frame processing with the mask-based beamformer.

In this paper, we derive a frame-by-frame update rule for
mask-based MVDR beamformer coefficients, where the time-
frequency masks for statistic computation are also estimated
frame-by-frame with long short-term memories (LSTMs).
Our proposed MVDR beamformer enables us to obtain the
enhanced signal frame-by-frame without a long delay. A
closed-form solution of the MVDR beamformer can be ob-
tained at every time frame with our algorithm based on the
Woodbury matrix identity. This closed-form solution allows
us to obtain beamformer coefficients that achieve the global
minimum of an objective function of the MVDR beamformer
at every time frame without any matrix inversion. Exper-
imental results show that our frame-by-frame beamformer
yields a large ASR performance gain from unprocessed sig-
nals and outperforms a baseline block-wise beamformer on
the CHiME-3 simulated evaluation set even with a shorter
time delay.

2. MASK-BASED MVDR BEAMFORMING

This section describes MVDR beamforming with batch pro-
cessing, where the spatial statistics are estimated based on
time-frequency masks. The mask-based MVDR beamformer
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will be extended for frame-by-frame processing in the next
section.

Let us assume that a noisy speech signal is recorded with
M microphones.yf,t = [y1,f,t, ..., yM,f,t]

T denotes anM×1
dimensional observation at(f, t), wheref and t denote the
frequency and time indices, respectively. An enhanced speech
signalŝf,t can be obtained by beamforming as

ŝf,t = wH
f yf,t, (1)

wherewf denotes anM × 1 dimensional beamformer coeffi-
cient at frequencyf .

The MVDR beamformer can be derived by minimizing
the total power of the beamformer outputs
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= wH
f Yfwf , (2)

with a constraintwH
f hf = hmref ,f . Yf =

∑
t yf,ty

H
f,t/T

denotes the covariance matrix of the observed signals, and
hf = [h1,f , ..., hM,f ]

T denotes the steering vector of the tar-
get signal.hmref ,f denotes the transfer gain between the ref-
erence microphone and the target source. This linear con-
straint keeps the beamformer coefficients distortionless in the
direction parameterized byhf . A closed-form solution to
minimize the objective function in Eq. (2) with the constraint
can be derived as [9]

wf =
Y−1

f hf

hH
f Y−1

f hf

h∗
mref ,f

. (3)

Instead of using the steering vectorhf , we can parameterize
the MVDR beamformer coefficients by using the covariance
matrix of the target signal as [10]

wf =
Y−1

f R(s)
f d

tr(Y−1
f R(s)

f )
, (4)

whered denotes a one-hot vector whosemref -th component

is one and the other components are zero.R(s)
f denotes the

covariance matrix of the target signal. Eqs. (3) and (4) are
equivalent whenR(s)

f = hfhH
f . We use Eq. (4) for the MVDR

beamformer to avoid steering vector extraction with eigenvec-
tor decomposition as in [5,7,11].

The covariance matrix of the target signal is often un-
known, therefore we estimate the covariance matrix by us-
ing time-frequency masks as in [4–8]. When we assume the
sparsity of the target signal and interference, the covariance
matrix of the target speech signalR(s)

f can be obtained by

R(s)
f =

1∑
t M

(s)
f,t

∑
t

M
(s)
f,t yf,ty

H
f,t, (5)

whereM (s)
f,t denotes the time-frequency mask for the target

signal.
In our previous work [5, 7, 11], the covariance matrix of

the target signal is obtained by subtracting the covariance ma-
trix of noise from that of the target plus noise signals. How-
ever, this subtraction sometimes means that the resultant ma-
trix is not positive definite and makes the algorithm unstable.
This often occurred especially with a frame-by-frame update
in our preliminary experiments, therefore we simply use Eq.
(5) in this work.

3. FRAME-BY-FRAME UPDATE RULE FOR MVDR
BEAMFORMER

Let us assume we update the beamformer coefficients at ev-
ery time frame, and the coefficients and the covariance ma-
trices have a time indext. One possible approach for adap-
tive beamforming is to use an iterative algorithm such as the
gradient descent algorithm described in [9, 12]. Unlike the
iterative algorithm, we derive an update rule for the coeffi-
cients frame-by-frame based on the Woodbury matrix iden-
tity, which allows us to obtain the closed-form solution of the
MVDR beamformer described in Eq. (4) at every time frame.
This means that we achieve the global minimum value of the
objective function described in Eq. (2) at every time frame.

To obtain the MVDR beamformer at timet, we compute
the inverse matrix ofYf,t based on the Woodbury matrix
identity. A recursive update rule for the covariance matrix
can be described as

Yf,t = Yf,t−1 + yf,ty
H
f,t. (6)

Note that we ignore the scalar scaling factor here since it is
eventually canceled out in Eq. (4). The inverse of the covari-
ance matrix at timet can be obtained based on Eq. (6) and
the Woodbury matrix identity as

Y−1
f,t = Y−1

f,t−1 −
Y−1

f,t−1yf,ty
H
f,tY

−1
f,t−1

(1 + yHf,tY
−1
f,t−1yf,t)

. (7)

By having the initial value of the inverse of the covariance
matrixY−1

f,0, we can compute the inverse matrix incrementally
at every time frame without any additional inverse operation.

The covariance matrix of the target signal at timet can
also be obtained recursively as

R(s)
f,t = R(s)

f,t−1 +M
(s)
f,t yf,ty

H
f,t, (8)

where we ignore the scaling factor for the same reason.
From Eqs. (7) and (8), the beamformer coefficients can

be updated at every time frame by

wf,t =
Y−1

f,tR
(s)
f,td

tr(Y−1
f,tR

(s)
f,t)

. (9)

This update rule achieves the global minimum of the objective
function described in Eq. (2) with the entire observed signals
obtained up to the current time frame.
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4. MASK ESTIMATOR FOR FRAME-BY-FRAME
BEAMFORMER

There are several ways to obtain time-frequency masks. One
approach is to use a generative model, e.g., a complex Gaus-
sian mixture model (CGMM) as in [5,7,11,13]. However, this
generative model-based approach relies on us using the statis-
tics of the observed signals to estimate the model parameters,
and so this approach needs to aggregate a sufficient amount
of observations for precise mask estimation. Hence, it is dif-
ficult to perform mask estimation frame-by-frame without a
time delay.

On the other hand, neural network-based mask estimation
has been investigated [4, 6, 8, 14–16], where time-frequency
masks can be obtained as outputs of neural networks. Al-
though BLSTMs have typically been used for mask esti-
mation in many studies [4, 6, 14–16], we can also use uni-
directional LSTMs instead of the BLSTMs to perform mask
estimation frame-by-frame as in [8].

5. EXPERIMENTAL EVALUATION

We evaluated our frame-by-frame beamformer update on the
CHiME-3 dataset [17]. We investigated ASR performance
in terms of word error rates (WERs) with online and batch
processing for both mask and beamformer estimation. The
performance was also compared with that obtained with the
baseline CGMM-based beamformer [7].

5.1. Data

We used the CHiME-3 dataset [17] for evaluation. Audio sig-
nals were recorded in four noisy public areas with six mi-
crophones attached to a tablet device. The noisy areas in-
cluded a bus (BUS), café (CAF), pedestrian area (PED), and
street junction (STR). The training data consisted of 7138
simulated noisy recordings and 1600 real noisy recordings.
The simulated noisy data were generated by convolving im-
pulse responses and clean speech signals from the WSJ0 cor-
pus [18]. The development set consisted of 1640 simulated
and 1640 real noisy recordings, which was used to tune hyper-
parameters. The evaluation set consisted of 1320 simulated
and 1320 real noisy recordings and was used for performance
evaluation. The sampling rate was16 kHz. The CHiME-3
dataset is described in further detail in [17].

5.2. Settings

For frame-by-frame mask estimation, we used one LSTM
layer followed by 2 fully-connected layers with ReLU activa-
tion functions and one fully-connected layer with a sigmoid
activation function. The LSTM layer and the 2 ReLU layers
had 256, 513 and 513 units, respectively. The final fully-
connected layer projected dimensions from513 to 201, which

is the number of frequency bins. We performed a short-time
Fourier transform with a 25 ms window length, an 10 ms
window shift and a hanning window. As input features, we
used log-magnitude spectra, which were averaged over the 6
channels. Optionally, we concatenated the input features at
the 5 previous and5 following frames, which introduced a
time delay of50 ms for feature extraction. The input features
were normalized by using a cumulative moving average com-
puted at every time frame. The LSTMs were trained on the
simulated training dataset by minimizing the mean squared
error between the log-magnitude spectra of clean signals and
enhanced signals obtained by masking. The rmsprop algo-
rithm [19] was used for model training, where the learning
rates were set atl = 0.00001 for the model with no frame
concatenation and atl = 0.0001 for that with an11-frame
concatenation, respectively. The learning rates were tuned
by using the development set. The mini-batch size was set at
128, and the number of maximum epochs was set at20. After
the iteration, the best models were picked based on the loss
on the development set. The initial value of the inverse of the
covariance matrixY−1

f,0 was set at an identity matrix.

For comparison, we used the CGMM-based beamformer
with batch and block-wise processing [7]. The block size was
set at250 ms as in [7], which means we experienced a time
delay of250 ms before obtaining enhanced signals. Note that
the MVDR beamformer used for the CGMM-based system
was slightly different from the one we used for our neural
network-based systems since it used subtraction to obtain the
covariance matrix of the target signals as described in [7]. We
used a subtraction-based covariance estimation for the base-
line CGMM-based system so that we followed our previous
work exactly. For additional investigation, we performed a
beamformer estimation with an entire utterance (batch pro-
cessing), block-wise processing and frame-by-frame process-
ing. Moreover, we compared the result with BLSTM-based
mask estimation to investigate the performance degradation
caused by the frame-by-frame mask estimation based on the
LSTMs. The BLSTMs were realized with the same number
of parameters as the LSTMs.

For an ASR system, we used a deep convolutional neural
network (CNN) acoustic model [20,21] and a class-based re-
current neural network (RNN) language model [22, 23] as in
our previous work [11]. The CNN acoustic model consisted
of five convolution layers and two max-pooling layers, where
all the layers contained 180 feature maps. The last convolu-
tion layer was followed by three fully-connected layers with
2048 units and a softmax layer with 5976 units. The units of
the softmax layer corresponded to context-dependent HMM
states. We used 10 classes for the RNN language model,
which consisted of 500 hidden recurrent units. The recog-
nizer was equivalent to the speaker-independent (SI) system
in our CHiME-3 paper [11].
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Table 1. WERs [%] obtained for the CHiME-3 development set.
systems mask estimation beamformer estimation

simu real total avg
avg BUS CAF PED STR avg BUS CAF PED STR

unprocessed - - 8.24 6.42 8.48 7.51 10.56 9.01 6.03 14.00 8.05 7.94 8.62

baseline CGMM MVDR
batch batch 5.19 5.15 6.39 4.45 4.78 5.00 7.82 3.85 3.92 4.39 5.09

block-wise (250 ms) block-wise (250 ms) 5.57 5.56 6.59 4.56 5.58 5.35 8.28 4.44 4.19 4.50 5.46
BLSTM MVDR batch batch 5.37 5.43 6.76 4.28 4.99 6.21 9.74 5.10 4.53 5.49 5.79

proposed LSTM MVDR
frame-by-frame batch 5.74 5.78 7.61 4.47 5.10 6.54 10.09 5.59 4.71 5.77 6.14
frame-by-frame block-wise (250 ms) 6.14 6.12 7.76 4.82 5.86 6.94 10.55 5.90 4.82 6.47 6.54
frame-by-frame frame-by-frame 6.22 6.14 7.99 4.97 5.78 7.13 10.89 6.02 4.99 6.61 6.67

proposed LSTM MVDR
+ 11 frame concatenation

frame-by-frame batch 5.43 5.53 7.01 4.40 4.79 6.12 9.35 5.18 4.59 5.35 5.77
frame-by-frame block-wise (250 ms) 5.85 6.02 7.36 4.66 5.37 6.53 9.79 5.56 4.75 6.02 6.19
frame-by-frame frame-by-frame 5.95 6.14 7.39 4.63 5.65 6.83 10.33 5.83 4.96 6.19 6.39

Table 2. WERs [%] obtained for the CHiME-3 evaluation set.
systems mask estimation beamformer estimation

simu real total avg
avg BUS CAF PED STR avg BUS CAF PED STR

unprocessed - - 10.17 8.37 11.69 9.86 10.78 15.60 22.55 16.21 12.89 10.74 12.89

baseline CGMM MVDR
batch batch 7.90 5.40 7.34 9.34 9.53 8.37 11.44 6.97 8.43 6.65 8.14

block-wise (250 ms) block-wise (250 ms) 8.47 6.85 8.39 8.39 10.25 9.13 12.96 8.27 7.85 7.43 8.80
BLSTM MVDR batch batch 6.87 5.92 7.68 6.56 7.30 9.33 13.83 8.76 6.88 7.87 8.10

proposed LSTM MVDR
frame-by-frame batch 7.51 6.07 9.00 7.40 7.56 10.13 14.08 10.85 7.40 8.19 8.82
frame-by-frame block-wise (250 ms) 8.03 6.28 8.98 8.14 8.72 10.90 15.16 11.36 8.43 8.65 9.46
frame-by-frame frame-by-frame 8.22 6.50 9.15 8.50 8.72 10.91 15.63 11.19 8.31 8.50 9.56

proposed LSTM MVDR
+ 11 frame concatenation

frame-by-frame batch 7.29 5.83 8.61 7.25 7.47 9.59 13.03 9.56 7.42 8.34 8.44
frame-by-frame block-wise (250 ms) 7.61 5.75 8.69 7.73 8.26 10.42 13.82 10.57 8.13 9.16 9.01
frame-by-frame frame-by-frame 7.83 6.07 8.74 7.92 8.59 10.54 14.53 10.68 8.03 8.91 9.18

5.3. Results

Tables 1 and 2 show the WERs obtained for the develop-
ment and evaluation sets, respectively. With frame-by-frame
mask and beamformer estimation, our LSTM-based MVDR
beamformer achieved a large performance gain from un-
processed signals with a short time delay. Furthermore,
11-frame concatenation helped to improve ASR performance
with the LSTM-based beamformer. Our LSTM-based frame-
by-frame beamformer with and without frame concatenation
outperformed a baseline CGMM-based block-wise beam-
former on the simulated evaluation set even with a shorter
time delay. Compared with batch processing, as expected, we
experienced a slight performance degradation when using the
LSTM-based frame-by-frame mask estimator instead of the
BLSTM-based mask estimator.

5.4. Discussion and future work

One possible reason for the (B)LSTM-based beamformer
working better with the simulated dataset is that the (B)LSTMs
were trained on simulated parallel training data. This limita-
tion will be removed by performing end-to-end optimization
as in [8,14–16] and/or recently-proposed adversarial training
for mask estimators [24]. These approaches allow us to train
a (B)LSTM-based mask estimator with real noisy recordings
without corresponding clean signals. Combining these ap-
proaches with our LSTM-based frame-by-frame beamformer
will constitute our future work.

6. CONCLUSION

In this paper, we proposed a frame-by-frame update rule
for a mask-based MVDR beamformer. The update rule was
combined with frame-by-frame mask estimation based on the
LSTMs, which enabled us to perform MVDR beamforming
with frame-by-frame processing. The proposed algorithm
achieved the global minimum of the objective function for
the MVDR beamformer at every time frame without any
matrix inversion as a result of the Woodbury matrix identity.
Experimental results showed that our frame-by-frame MVDR
beamformer outperformed block-wise CGMM-based MVDR
beamforming on the CHiME-3 simulated dataset even with a
shorter time delay.
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