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ABSTRACT

Neural network based spectral mask estimation for acoustic
beamforming, which consists of linear filtering and mask es-
timation, has shown to be a promising approach for robust
speech recognition in noisy environments. Nevertheless, few
improvements are made on the linear filtering. In this paper,
we investigate the Speech Distortion Weighted Multichannel
Wiener Filter (SDW-MWF) and the variable span linear filter,
and prove that they can be linked by Generalized Eigenvalue
Decomposition (GEVD) of the speech covariance matrix. The
resulting GEVD based SDW-MWF largely reduces the word
error rate and even achieves competitive recognition perfor-
mance with the state-of-the-art generalized eigenvalue beam-
former. Furthermore, we found that the recent signal approxi-
mation is no better than mask approximation when combined
in calculating the linear filter coefficients.

Index Terms— multichannel Wiener filter, variable span
filter, neural network based masking, speech recognition

1. INTRODUCTION

The integration of multichannel linear filters and Deep Neural
Network (DNN) based spectral mask estimation has shown to
be a promising approach for robust automatic speech recog-
nition in the CHiME challenges [1, 2, 3]. Many recent ad-
vances originated from it, such as beamnet[4], multichannel
end-to-end training [5] and deep clustering based beamform-
ing [6, 7]. This approach can be analyzed from two perspec-
tives: linear filtering and mask estimation. Much work has
focused on the mask prediction while less attention was paid
to the linear filtering.

The Generalized Eigenvalue (GEV) beamformer [8] and
Minimum Variance Distortionless Response (MVDR) [9] be-
come popular, because they are independent of the micro-
phone array geometry and just rely on the speech and noise
second-order statistics. Nevertheless, these two beamformers
are optimized under different constraints. GEV is designed to
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achieve maximum output Signal-to-Noise Ratio (SNR) while
MVDR is to achieve minimum speech distortion. Meanwhile,
the Speech Distortion Weighted Multichannel Wiener Filter
(SDW-MWF), that is the optimal solution under the weighted
Minimum Mean Squared Error (MMSE) criterion, has also
attracted many interest in the past decades [10, 11, 12, 13].
In [14], these filters are compared in terms of the relative
speech recognition performances together with a recently pro-
posed Variable Span (VS) linear filter [15]. The SDW-MWF
is found to underperform the others.

Recent work has concluded that the linear filters are all
equivalent up to a scaling factor if they are formulated un-
der the same framework [16, 17]. For instance, under the
narrowband approximation, SDW-MWF can be reformulated
into the form of MVDR or plain MWF by setting its trade-off
parameter to 0 and 1, respectively [11]. Various filter variants
are also derived for the VS filter [15]. In this paper, we will
further show that the SDW-MWF is linked to the VS filter
using the Generalized Eigenvalue Decomposition (GEVD) of
the speech covariance matrix. The GEVD based SDW-MWF
is able to achieve competitive speech recognition performance
with the others.

When calculating the beamformer coefficients, the speech
and noise covariance matrices need to be estimated from the
noisy observations. This is where the emerging mask pre-
diction techniques step in, since the masks can be interpreted
as time-frequency signal presence probabilities. The idea of
masking originates from the early work of Computational
Auditory Scene Analysis (CASA) [18]. With deep learn-
ing, mask prediction is treated as a classification task and
different training features and targets are thoroughly stud-
ied [19, 20]. Recent advances, such as deep clustering [21]
and permutation invariant training [22], address the task from
the segregation and separation perspectives. Therefore, it
is quite intuitive to integrate these new techniques with lin-
ear filtering as what has been done in [6]. Note that these
methods are single channel based, one question remains that
whether the improvements on the mask prediction can bring
according improvements to the linear filters. Specially, it is
concluded that Signal Approximation (SA) is a better ob-
jective than Mask Approximation (MA) in source separation
tasks [23]. We are motivated to investigate the SA based
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linear filters and compare them with the MA based ones in
the recent CHiME-4 speech recognition task.

2. SIGNAL MODEL

In a typical enclosure, a speech signal s is emitted from the
source and captured by a microphone array with M micro-
phones. The observations at time t are written as

ym(t) = gm(t)� s(t) + nm(t), m = 1, 2, ...,M (1)

where � denotes convolution, gm is the acoustic impulse re-
sponse relating the source and the mth microphone and nm is
the additive noise, which is assumed to be uncorrelated with
speech. In the Short-time Fourier (STFT) domain, the micro-
phone signals are given by

Ym(l, k) = Xm(l, k) +Nm(l, k) (2)

where Xm(l, k) = Gm(k)S(l, k) is the source image in the
mth microphone under the narrowband approximation. l is
the frame index and k is the frequency index. Note that the
subsequent operations are performed on time-frequency bin
basis, thus the indexes will be omitted for clarity.

3. ACOUSTIC BEAMFORMERS

Beamforming techniques aim to design a complex-valued fil-
ter h = [H1, H2, ..., HM ]T that extracts the desired source
and suppresses the other interfering components. T denotes
transposition. The filter is applied to the observation vector
and the output is

O = hHy

= hHx + hHn (3)

where H denotes Hermitian transpose, y = [Y1, Y2, ..., YM ]T ,
x = [X1, X2, ..., XM ]T and n = [N1, N2, ..., NM ]T .

3.1. SDW-MWF [10]

The SDW-MWF is derived under the weighted MSE criterion
with respect to an arbitrary channel of the reverberated source,
say X1:

min
h

E{|hHx−X1|2}+ µE{|hHn|2} (4)

where µ ≥ 0 is known as the trade-off parameter that tunes
speech distortion versus noise reduction. A larger µ will lead
to more noise reduction at the expense of more speech distor-
tion. The solution to (4) is

hSDW-MWF = (Φxx + µΦnn)−1Φxxu1 (5)

where Φxx = E{xxH} is the speech covariance ma-
trix, Φnn = E{nnH} is the noise covariance matrix and
u1 = [1, 0, ..., 0]T is an M -dimensional vector that projects
on the first channel.

3.2. Variable span filter [15]

Assuming Φnn is of full rank and Φxx is of rank-P , the two
Hermitian matrices can be jointly diagonalized as follows:{

BHΦxxB = Λ
BHΦnnB = I

(6)

where B, invertible but not necessarily orthogonal, is the
eigenvector matrix of Φ−1nnΦxx. I is the M × M identity
matrix. Λ is a diagonal matrix whose elements are the eigen-
values arranged in descending order λ1 ≥ λ2 ≥ · · · >
λP+1 = · · · = λM = 0. That is to say, the last M − P
eigenvalues are exactly zero while its first P eigenvalues
are positive. The corresponding eigenvectors are denoted by
b1,b2, ...bM , which form a new basis in the signal space.
Then it is always possible to write h as

h = Ba (7)

where a are the coordinates in the new basis.
The VS trade-off filter is obtained by aQ = (ΛQ +

µIQ)−1BH
QΦxxu1 with the last M − Q components of a

being 0. Accordingly,

hVS =

Q∑
q=1

bqb
H
q

µ+ λq
Φxxu1 (8)

where 1 ≤ Q ≤M denotes the span in the signal space.

3.3. Link between SDW-MWF and VS

It is only known that for Q = M , the VS trade-off filter is the
same as the SDW-MWF since both are the optimal solutions
under the weighted MSE constraint [15]. Here, we derive a
more general link between the two filters by analyzing Φxx.
Using a basis p1,2...,M , the speech covariance matrix can be
decomposed as

Φxx =

Q∑
q=1

σxqpqp
H
q︸ ︷︷ ︸

ΦQ

+ΦZ (9)

where σxq
is the scaling factor, ΦQ is the rank-Q approxima-

tion of the speech covariance matrix and ΦZ is a remainder
matrix. From (6), we have

Φxx = B−HΛB−1 (10)
ΦQ = B−Hdiag{λ1, λ2, . . . , λQ, 0, . . . , 0}B−1(11)
ΦZ = B−Hdiag{0, . . . , 0, λQ+1, . . . , λM}B−1 (12)

where diag{} means diagonal matrix. The SDW-MWF for-
mula (5) then leads to

h = B

(
diag{ 1

µ+ λq
}
)

B−1u1 (13)
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Using B−1 = BHΦxx, the above formulation is indeed the
VS trade-off filter (8).

It is further noted that

Φxxu1 = ΦQu1 + ΦZu1 = ΦQu1 (14)

Then (13) can be written as

hGEVD-SDW-MWF = (ΦQ + µΦnn)−1ΦQu1 (15)

By comparing (15) to (5), it is seen that the VS filter is equiv-
alent to replacing Φxx in SDW-MWF by the GEVD based
ΦQ, and the span is decided by the number of eigenvectors
used in building the filter.

4. MASK ESTIMATION

The linear filters are specified as functions of Φxx and Φnn,
for which the estimation is based on neural networks. The
procedure is illustrated in Fig. 1. A Bidirectional Long Short-
term Memory (BLSTM) network is first trained on ideal bi-
nary mask targets, defined as

Mx =

{
1 SNR > LCx

0 otherwise , Mn =

{
1 SNR > LCn

0 otherwise.
(16)

where LCx and LCn are the speech and noise local thresh-
olds, respectively. The training loss function is given by

lossMA = CE(M̃x,Mx) + CE(M̃n,Mn) (17)

where CE means the cross-entropy loss and tilde variables are
predictions. This is referred as Mask Approximation (MA).

In [23], Signal Approximation (SA) was proposed and the
training loss function was changed to

lossSA = (M̃x · |Y | − |X|)2 + (M̃n · |Y | − |N |)2 (18)

where |X| is the reference speech magnitude spectrum and
|N | is the noise magnitude spectrum. SA was found better
than MA because the optimizing objective (18) was more
related to the speech separation task at hand. The SA setup
also avoids the explicit design of the ideal masks. We thus
first combine BLSTM and SA (BLSTM-SA) and followed
by further combining with linear filters. The investigation
is whether it can bring performance benefits to our speech
recognition task. The Phase Sensitive Approximation (PSA)
is evaluated together, which is given by replacing |X| by
|X|cos(θY − θX) and |N | by |N |cos(θY − θN ), with θ
denoting the signal phase.

The masks are used to obtain Φ̃xx = 1∑
l M̃x

∑
l M̃xyyH

and Φ̃nn = 1∑
l M̃n

∑
l M̃nyyH .

𝑌

𝑀𝑥 Φ 𝑥𝑥

𝑀𝑛 Φ 𝑛𝑛

Fig. 1. Illustration of linear filtering supported by mask pre-
diction neural network. The numbers in brackets denote the
dimension of the variables or components.

5. SPEECH RECOGNITION EXPERIMENTS

5.1. Setup

The CHiME-4 dataset is used in the experiments. It contains
both real and simulated data. The real data is recorded in
four everyday environments: bus (BUS), cafe (CAF), pedes-
trian area (PED) and street junction (STR). The signals are
recorded by six microphones and sampled at 16 kHz. The
simulated data is generated by artificially mixing clean speech
data from the WSJ0 corpus with noisy backgrounds. We use
the baseline speech recognition system built with Kaldi (avail-
able at https://github.com/kaldi-asr/kaldi/
tree/master/egs/chime4). The acoustic model is
trained on the noisy training set while the linear filtering
methods are applied only to the development set and test set.
The filtered signals are then sent for transcription and the
Word Error Rates (WERs) are computed.

For the front-end, the BLSTM-MA is adopted from [2],
and the BLSTM-SA is extended on this. The network has one
BLSTM layer with 256 nodes, and two feed forward (FF) lay-
ers each with 513 nodes. STFT is performed in 1024 points.
The input is single channel magnitude spectrum of dimension
513 and the output is the concatenation of speech and noise
masks. The network is initialized from Gaussian distributed
samples and the Adam method is used for fine tuning. Se-
quence normalization and dropout are used as in the origi-
nal setup. Early stopping is employed with a patience of 5
epochs.

The GEV filter is chosen as the baseline method, that is
defined as

hGEV = argmax
h

hHΦxxh

hHΦnnh
(19)

for which we have hGEV = b1. Blind Analytic Normalization
(BAN) can further be applied as a post filter to reduce speech
distortion. The span for VS and GEVD-SDW-MWF is set to
beQ = 1 with µ = 1, which gives the best results. The rank-1
constraint also benefits other linear filters as shown latter.

5.2. WER results

The WER results obtained with the official CHiME-4 back-
end speech recognizer are summarized in Table I. We first
compare the results of BLSTM-SA/PSA with BLSTM-MA
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Table 1. WERs of different filters obtained with the official CHiME-4 back-end speech recognizer. The right part gives details
in different environments for the real test set. Bold indicates the best result.

Dataset dev test test-real
simu real simu real BUS CAF PED STR

BLSTM-SA GEV-BAN 4.83 4.53 6.68 8.10 11.61 6.78 7.32 6.69
BLSTM-PSA GEV-BAN 5.14 4.83 6.59 7.67 10.58 6.31 7.42 6.35

BLSTM-MA

GEV-BAN 4.93 4.83 6.29 7.25 10.00 6.39 6.22 6.39
GEV 5.25 4.76 6.98 7.14 8.34 6.72 7.04 6.46
VS 3.83 4.45 4.15 7.35 11.46 5.96 5.85 6.13
SDW-MWF 6.91 6.81 10.81 12.92 24.06 10.68 8.69 8.26
GEVD-SDW-MWF 3.85 4.40 4.39 7.38 11.57 6.05 5.94 5.96

BLSTM-MA
GEVD-GEV-BAN 3.83 3.84 4.21 6.17 9.44 4.99 4.93 5.30
GEVD-GEV 4.11 3.91 4.65 5.93 7.80 5.57 5.29 5.09
GEVD-VS 3.88 4.07 4.42 6.86 11.07 5.66 5.42 5.30

using the GEV-BAN method. Though the SA/PSA objec-
tives avoid the design of ideal masks and lead to better sep-
aration performance, the combination with linear filters does
not achieve corresponding benefits, as indicated by the higher
errors on the test set. It is possible that the masks indeed
function as time-frequency signal presence probabilities and
the MA objective is more proper for the linear filters. In the
following experiments, the BLSTM-MA setup is used.

GEV and GEV-BAN lead to similar results though they
perform differently in terms of speech distortion. The main
difference is observed on the BUS data, which contains strong
low frequency noises. The GEV filter happens to feature a
constant residual noise power and the low frequency ener-
gies are highly suppressed [14]. The original SDW-MWF
performs significantly worse than others. However, with the
GEVD decomposition and reconstruction of the speech co-
variance matrix, the WERs largely decrease and are now com-
petitive to GEV and VS on both real and simulated data. Dif-
ferent results are obtained for GEVD-SDW-MWF and VS,
which should be due to their different formulations and that
the inversion operation in (15) is numerically instable.

5.3. Rank-1 prior assumption of Φxx

The GEVD of the speech covariance matrix links SDW-
MWF to VS. Meanwhile, the rank-1 decomposition of Φxx

can be interpreted as a prior assumption under the narrow-
band approximation (2), which indicates that the GEVD
reconstructed speech covariance matrix can be directly incor-
porated in all other linear filters. This turns out effective as
shown in the last three rows of Table I. The relative WER
reductions are 17% for GEV and 7% for VS on the real test
data. The approach is most effective on the real STR environ-
ment and on the simulated data, where the rank-1 constraint
better matches the low reverberant data scenarios. As far as
we know, the GEVD-GEV is the most effective filter ever

reported on the CHiME-4 real test data.

6. CONCLUSION

We looked into the neural network based mask estimation for
acoustic beamforming method, and adopted it to the SDW-
MWF and VS filter. The SDW-MWF was proved to be equiv-
alent to the VS filter by replacing its speech covariance matrix
with the GEVD reconstructed one. The resulting GEV-SDW-
MWF significantly reduced the WER on the CHiME-4 speech
recognition task. Furthermore, the rank-1 GEVD decompo-
sition was combined in other filters and led to the effective
GEVD-GEV filter. We also investigated the BLSTM-SA/PSA
setup and concluded that it was no better than BLSTM-MA
when the masks were employed in combination with linear
filters. Our code is available at https://github.com/
ZitengWang/nn_mask.
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