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ABSTRACT

In this paper we investigate two methods for the preservation of spa-
tial cues in binaural speaker separation. We develop these methods
as extensions of our previously proposed model-based generalized
sidelobe canceller (GSC) which utilizes a maximum likelihood tech-
nique for speaker localization. In the proposed implementation the
adaptive GSC provides an estimate of the target signal as well as an
estimation of target presence probability (TPP). Binaural outputs are
generated in two different ways: In the first approach the binaural
signals are rendered using the GSC output signal combined with the
HRTF hypotheses which are adapted by the broadband localization.
The second approach uses the GSC output and the TPP to determine
a common spectral postfilter. We find that the adaptive beamformer
combined with the binaural rendering technique leads to larger im-
provements of the quality of the desired signal and delivers less un-
natural fluctuations as compared to the common spectral postfilter.
Informal subjective tests as well as instrumental measurements in
the presence of the listener head movements reveals, however, the
benefit of the spatially motivated spectral postfilter for the preserva-
tion of binaural cues of both target and interferer signals.

Index Terms— Binaural source localization, beamforming,
source separation, hearing aids, generalized sidelobe canceller

1. INTRODUCTION

Speech enhancement in hearing aids (HAs) still provides many chal-
lenges especially in realistic and divers acoustic scenarios. However,
the advent of the wireless link between the left and right HAs allows
the execution of multichannel algorithms that result in better speech
quality and intelligibility [1] as well as reliable sound source local-
ization as compared to monaural processing.

Several studies have investigated the problem of the attenuation
of directional interferes such as competing speakers. These may be
divided into three main categories. The first group is the adaptive dif-
ferential microphone array and its extensions [2, 3] that suppress di-
rectional noise without having prior knowledge of source positions.
The second group of algorithms, e.g., [4, 5, 6] exploit directional
probabilistic models to build time-frequency masks in order to segre-
gate speech sources. The third group of algorithms are beamforming
techniques that are commonly combined with localization methods
to minimize the mismatch of the source direction and the steering
vector [7, 8].

One of the main objectives in binaural speech enhancement is to
preserve the binaural cues, namely interaural level difference (ILD)
and the interaural time/phase difference (ITD/IPD). Various tech-
niques have been proposed to deal with the problem of binaural
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noise reduction preserving these spatial cues. These can be classified
in two main groups. Some authors have developed adaptive beam-
forming algorithms taking additional constraints into accounts that
balances between noise reduction and cue preservation [9, 10, 11].
Other studies have applied a real-valued common gain to both left
and right channels [12, 5, 13].

In this study we aim at the separation of simultaneous speak-
ers while preserving the binaural cues of the input signal. We
use behind-the-ear (BTE) HAs with 2x2 microphones. We extend
our previously proposed model-based GSC [14] that employs the
stochastic maximum likelihood (SML) localization technique [15].
The SML also provides the estimate of the power of the clean
speech and noise signals. These estimates are utilized to compute
the target presence probability (TPP). Then, we generate binaural
outputs in two different ways: The first approach is to render the
binaural signals using the GSC output signal in conjunction with
the head-related transfer function (HRTF) hypotheses that are esti-
mated based the localization results. The other approach derives the
spectral postfilter motivated by GSC output and the TPP estimate.

The remainder of this paper is organized as follows. Section
2 introduces the binaural signal model. In Section 3 the binaural
localization using the SML approach is described. Section 4 and 5
discuss the TPP estimation and the model-based GSC, respectively.
In Section 6 we propose two binaural cue preservation approaches.
Experimental results are explained in Section 7. Section 8 concludes
this paper.

2. BINAURAL SIGNAL MODEL

We consider multichannel signals from Q sources received by the
M microphones of binaural HAs. Analyzing signals in the STFT
domain and using matrix notation we obtain the received signal as

X(k, b) = H(k,Θ)S(k, b) + V (k, b), (1)

where (k, b) indicate frequency and frame indices. S and V repre-
sent spectral vectors of the point source signal and the noise signal at
microphones, respectively. In principle, H is the matrix of binaural
room transfer functions (BRTFs) of the M microphones determined
by

H(k,Θ) = [H1(k, θ1),H2(k, θ2), ..,HQ(k, θQ)], (2)

where Hq(k, θq) = [Hq1(k, θq), Hq2(k, θq), .., HqM (k, θq)]
T . In

this equation θq denotes the azimuth location of source q. The signal
vectors are given by X(k, b) = [X1(k, b), X2(k, b), .., XM (k, b)]T ,
S(k, b) = [S1(k, b), S2(k, b), .., SQ(k, b)]T , and V (k, b) =
[V1(k, b), V2(k, b), .., VM (k, b)]T . The received signals are pro-
cessed by the GSC which is adapted using the SML DOA estimation
approach [15].
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3. SML LOCALIZATION ALGORITHM

If we assume that the source and the noise signals are short-time sta-
tionary stochastic random processes and both follow complex Gaus-
sian distributions, we may write the probability density function of
the narrowband signal X in each frequency bin as [15]

P (X|θ,ΦXX) =
1

πM |ΦXX |
exp

(
−XHΦ−1

XXX
)
, (3)

where ΦXX is the spatial covariance matrix. We assume that
a sequence of DFT frames of the narrowband signal XB =
[X(1), ...,X(b), ...,X(B)]T is temporarily independent and iden-
tically distributed. We thus write the log-likelihood function as

L(XB |θ,ΦXX) = log

B∏
b=1

P (X(b)|θ,ΦXX) (4)

= −BM log π −B log |ΦXX | −BTr
{
Φ−1

XXΦ̂XX

}
,

where Φ̂XX is the estimation of the spatial covariance matrix us-
ing non-recursive averaging. Based on the signal model in (1) and
assuming the spectral disjointness property of speech signals and a
homogeneous noise field, we may write the spatial covariance matrix
of the microphone signals as

ΦXX(k) = H(k, θ)HH(k, θ)ΦSS(k) + ΦV V (k)ΓV V (k), (5)

where ΦSS and ΦV V denote the power of the dominant clean speech
and the noise signals, respectively. Here, ΓV V indicates the nor-
malized spatial covariance matrix of the noise signal. The SML ap-
proach first derives the estimation of the power of the clean speech
and noise signals Φ̂SS and Φ̂V V conditioned on the DOA parameter
θ. Then, it substitutes the estimated parameters in the log-likelihood
function (4) and maximize it with respect to θ. The power of the
clean signal is estimated by [15]

Φ̂SS(k) = (6)

HH(k, θ)ΓV V
−1(k)(Φ̂XX(k)− Φ̂V V ΓV V (k))Γ−1

V V (k)H(k, θ)(
HH(k, θ)Γ−1

V V (k)H(k, θ)
)2 .

The estimation of the power of the noise signal is obtained as [15]

Φ̂V V (k) =
1

M −QTr
(
P⊥H(k, θ)Φ̂XX(k)Γ−1

V V (k)
)
. (7)

In this equation P⊥H(k, θ) = IM×M − PH(k, θ), where

PH(k, θ) = (8)

H(k, θ)
(
HH(k, θ)Γ−1

V V (k)H(k, θ)
)−1

HH(k, θ)Γ−1
V V (k),

has the properties of an orthogonal projection matrix and IM×M
is the identity matrix. Therefore, by substituting (6), (7) in (5) and
inserting (5) in (4) we achieve the DOA cost function as [15]

ΛSML(k, θ) = (9)

− log |PH(k, θ)Φ̂XX(k)PH
H(k, θ) + Φ̂V V P⊥H(k, θ)ΓV V (k)|,

which is maximized across all azimuth candidates using a grid search
in steps of 5 degree. This provides narrowband DOA estimates
θ̂(k, b). We also sum the cost function across all frequency bins and
take the global maximum and discard other maxima to achieve the
broadband localization result. It improves the robustness of DOA es-
timates but delivers a single directional estimate per time frame only
[16]. Note that, in the above equation we use HRTFs hypotheses
Ĥ(k, θ) extracted from the database [17] instead of H(k, θ).

4. TARGET PRESENCE PROBABILITY (TPP)

Due to the assumption that speech signals are spectrally disjoint,
each time-frequency bin is dominated by one speech source. Given
the DOA of Q concurrent speakers in the presence of ambient noise
we may statistically formulate Q+ 1 hypotheses

• HSq (k, b), q ∈ {1, ..Q}, speech source q is present,

• HV (k, b), all speech sources are absent.

The narrowband DOA estimates θ̂(k, b) are commonly modeled us-
ing a Gaussian mixture model (GMM) [6, 7]. Therefore, the poste-
rior probability of each hypothesis given the DOA estimates, which
is known as TPP, is determined by

p(HSq |θ̂(k, b)) =
ρSq N

(
θ̂(k, b)|µSq , σ

2
Sq

)
∑Q+1
i=1 ρSi N

(
θ̂(k, b)|µSi , σ

2
Si

) , (10)

where the mean of each Gaussian component indicates the location
of each source, i.e., θSq = µSq . In this equation, σ2

Sq
and ρSq denote

the variance and the prior probability of the q-th Gaussian compo-
nent. The noise is also modeled as an extra Gaussian component in
the GMM. The mean and the variance of this Gaussian distribution
is set to µN = π and σ2

N = π. We set the variance of the speakers
positions to σ2

Sq
= π/18. Then, the priors ρSq of the GMM are

estimated using the multichannel speech presence probability (SPP)
[18] in each frequency bin. We compute the conditional probability
of each hypothesis given the noisy signal as [19]

p(HSq |X) =
p(X|HSq )p(HSq )∑Q

i=1 p(X|HSi)p(HSi) + p(X|HV )p(HV )
,

(11)

in which p(HSq ) and p(HV ) denote prior probabilities of the q-th
speech source presence and speech absence, respectively. Note that
in this equation we omit (k, b) for readability. Equation (11) may be
simplified to p(HSq |X) =

Λq

1+
∑Q

i=1 Λi
, where

Λq =
p(HSq )

p(HV )

p(X|HSq )

p(X|HV )
(12)

is the generalized likelihood ratio for source q. Assuming that DFT
coefficients of speech and noise signals follow complex Gaussian
distributions and are mutually independent we obtain the generalized
likelihood ratio as [14]

Λq =
p(HSq )

p(HV )

1

1 + δqζq
exp

(
δ2
qζq

1 + δqζq
γq

)
, (13)

where ζq =
ΦSqSq

ΦV V
and γq =

Φ
ŜqŜq

ΦV V
are the a priori and the a

posteriori SNR of source q respectively. Here, ΦSqSq and ΦV V are
estimated using (6) and (7), respectively. Moreover, ΦŜqŜq

denotes

the power of the estimated source signal, where Ŝq is the GSC out-
put given by (18). In (13), we have δq = HH(k, θq)Γ

−1
V V H(k, θq).

Under the special case of uncorrelated white noise using a free-field
microphone array we have δq = M . Therefore, for M = 1 we
achieve the well-known expression for the generalized likelihood ra-
tio for single channel noise reduction [20]. We use (11) to estimate
ρSq in (10). Note that we assume fixed values for the prior probabil-
ities of the q-th speech source presence and speech absence in (11).
The TPP estimates are integrated in the model-based GSC [7, 14].
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Fig. 1. Block diagram of the proposed binaural speaker separation
algorithm using the GSC output signal combined with binaural ren-
dering approach.

5. MODEL-BASED GSC

The GSC for source q consists of a fixed beamformer W fq (k, b),
an adaptive blocking matrix Bq(k, b), and an adaptive noise can-
celer W Vq (k, b). We design the fixed beamformer using the MVDR
approach assuming uncorrelated noise denoted as W fq (k, θq) =

H(k,θq)

||H(k,θq)||2 . It thus involves both IPD and ILD cues in its computa-
tion.
We use the same strategy as in [7, 8] for the design of the adaptive
blocking matrix and its application to the binaural configuration. The
idea is to first construct the projection matrix onto the target signal
subspace which is estimated by

P̂ q(k, b) =
(

1− p(HSq |θ̂(k, b)
)
P̂ q(k, b− 1) (14)

+ p(HSq |θ̂(k, b))
Φ̂XX(k, b)

‖X(k, b)‖2
,

and then to compute the projection to the complementary subspace
as

P̂
⊥
q (k, b) = IM×M − P̂ q(k, b). (15)

Then, the blocking matrix is given by selecting the first (M − 1)
rows and M columns of the matrix argument using an operator
κ(M−1)M (·) as

Bq(k, b) = κ(M−1)M

(
P̂
⊥
q (k, b)

)
. (16)

The adaptive noise canceller uses a normalized least mean-square
(NLMS) algorithm [7]

W Vq (k, b+ 1) = W Vq (k, b) + αq
Ŝ∗q (k, b)Bq(k, b)X(k, b)

||Bq(k, b)X(k, b)||2 ,

(17)

with an adaptive step-size αq =
(

1− p(HSq |θ̂(k, b))
)
αf , where

αf denotes a fixed stepsize factor. In this equation, Ŝq indicates the
output of the GSC beamformer for source q determined by

Ŝq =
(
WH

fq (k, b)−WH
Vq

(k, b)Bq(k, b)
)
X(k, b). (18)

X

X

LSA-TPP
Model-based

GSC

DOA TPP

Fig. 2. Block diagram of the proposed binaural speaker separation
algorithm using the GSC output signal for the estimation of the LSA-
TPP postfilter.

6. BINAURAL CUE PRESERVATION

A fundamental step in binaural speech enhancement is to generate
output signals that preserves spatial information of the original sig-
nal [21]. We consider two methods to generate dual-channel output
from the beamformer. The first proposal is to render binaural signals
using the localization results in conjunction with the HRTF hypothe-
ses. We use the online broadband DOA estimation provided by the
SML algorithm in order to determine the location of the target source
and to adapt the corresponding HRTF hypothesis at each time step.
We then multiply the GSC output signal in the frequency domain
with the HRTFs hypothesis for the left and the right ear. The hy-
pothesis could be extracted either from a database [17] or from the
spherical head model [22]. The overall structure is shown in Fig.
1. This approach is similar to the binaural MVDR beamformer [11]
method that applies a distortionless response constraint for the left
and the right channel, separately.

An alternative is to utilize the beamformer output in a postfil-
ter as a spectral gain [12]. In theory if we had a perfect estimate
of the power of clean speech and noise signal, the optimal solution
to the noise reduction problem would be the multichannel Wiener
filter which is decomposed into a MVDR beamformer followed by
a single channel Wiener filter. In practice since these estimates are
erroneous, the Wiener gain would be a suboptimal solution for the
postfilter. Furthermore, the proposed adaptive beamformer provides
an additional flexibility to incorporate the TPPs in the single channel
noise reduction.
In [23] a modified minimum mean-square error log-spectral ampli-
tude (MM-LSA) estimator is proposed in which the SPP is multi-
plied by a spectral gain which is derived using the MMSE-LSA al-
gorithm [24]. We use the same strategy for the design of the postfil-
ter which is presented in Fig. 2. The spectral gain of the postfilter is
denoted by

GLSA−TPP = (19)

p(HSq |θ̂(k, b))
MΦŜqŜq

(k)

Tr{ΦXX(k)} exp

(
1

2

∫ ∞
νq

e−t

t
dt

)
,

where νq =
MΦ

ŜqŜq
(k)

Tr{ΦXX (k)}γq . The common gain is applied to the
front left and right microphones of hearing aid to generate binaural
outputs.
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Fig. 3. Objective evaluation of proposed binaural speaker separation
approaches for the recording with the listener head turns. Signals
are recorded under no background noise (NoNoise) and under un-
correlated white noise (Uncorr), diffuse white noise (DiffWhite) and
diffuse babble noise (DiffBabble) with global broadband SNR of 10
dB. The unprocessed signal (UP) has an SIR of 0 dB.

7. EVALUATION RESULTS

We conduct experiments in a reverberant room with (T60 = 0.4s,
critical distance 1.1 m). We use the front and back microphones of a
pair of BTE HAs attached to a dummy head. Loudspeakers playing
male and female utterances are placed 1.2 m away from the dummy
head and are thus outside the critical distance. We use speech signals
from the TSP database [25]. Each signal consists of four male and
four female utterances of 10 s duration. Audio is recorded at 48 kHz
and later downsampled to 16 kHz. Signals are segmented using a
Hann window of length 32 ms with an overlap of 16 ms between
successive DFT frames. The number of FFT bins equals 1024.

In the first experiment we assess the performance of the pro-
posed binaural speaker separation algorithms for a recording with
listener head turns. Two source loudspeakers are located at ±30◦

w.r.t. the head. One cycle of head turns starts when the dummy head
is in front of the first speaker and ends when the head is facing the
second speaker. The angular speed of the head turn is 30◦/s.

We evaluate the performance of algorithms in terms of percep-
tual evaluation of speech quality (PESQ) [26], the short-time objec-
tive intelligibility (STOI) [27], and signal-to-interference ratio (SIR)
[28]. Results for different types of background noise including un-
correlated noise, spatially diffuse white noise and spatially diffuse
babble noise with 10 dB SNR are reported in Fig. 3. For this evalu-
ation we use the front left microphone of hearing aids. Additionally,
the motion of the head is tracked via the SML broadband localiza-
tion. As it is observed from this figure the binaural rendering (Binrl-
Render) approach outperforms the LSA-TPP approach in terms of
the predicted quality and intelligibility. However, the LSA-TPP ap-
proach achieves a better result for the separation of the target sig-
nal. Furthermore, the binaural rendering approach shows less musi-
cal noise and thus fewer distortion than the LSA-TPP algorithm.

We also evaluate the capability of the proposed algorithms to
preserve spatial cues. In the first experiment we consider the fixed
target position at 30◦ and the moving interferer at locations in the
full azimuth circle starting from −150◦ and increasing clockwisely
with steps of 30◦ w.r.t. the head. In the second experiment the target
is located at the aforementioned angles and the interferer angle is

LSA-TPP

Binrl-Render

(a) Fixed target

(b) Moving target

Fig. 4. ILD and IPD error of the proposed binaural speaker separa-
tion algorithms: (a) The target speaker is fixed at 30◦ and an inter-
ferer is at corresponding angles. (b) The target speaker is located at
corresponding angles while the interferer is fixed at 30◦ .

set to 30◦. Results in terms of ILD and IPD errors are presented in
Fig. 4. Figure 4 (a) verifies that the binaural cues of the target signal
using the LSA-TPP approach are better preserved than by using the
binaural rendering approach when the target is fixed and the inter-
ferer moves. The reason lies in the mismatch of HRTFs as well as
the effect of room reverberation that distorts the spatial cues in the
binaural rendering approach. Moreover, as shown in Fig. 4 (b) the
preservation of binaural cues varies depending on where the target is
located. For angles in the frontal hemisphere the LSA-TPP approach
outperforms the binaural rendering one. However, for angles in the
back hemisphere the LSA-TPP shows less accuracy in the preserva-
tion of ILD cues than the binaural rendering approach. Nevertheless,
there is only a small difference between the two approaches in terms
of IPD error.
Based on informal listening test for the recording with head move-
ments, the LSA-TPP approach is able to preserve the spatial cues
of the residual interference, since the binaural rendering approach
aligns the spatial cues of the residual interferer with the target.

8. CONCLUSION

In this paper we develop novel algorithms for the preservation of spa-
tial cues to binaural speaker separation using HA microphones. We
first combine the model-based GSC with stochastic maximum like-
lihood localization. The proposed structure delivers the target signal
estimation in addition to an estimate of the target presence probabil-
ity. The adaptive beamformer is then combined with two approaches
to generate binaural outputs. The first approach is based on a binau-
ral rendering technique using the GSC output signal in conjunction
with HRTFs hypothesis derived from the localization. The other al-
gorithm computes a common spectral gain which is applied to the
left and right channels. Results corroborate that the LSA-TPP ap-
proach achieves better performance for the suppression of interfering
signals and preservation of binaural cues of both target and interferer
signals as compared to the binaural rendering method, however at the
expense of more level of random fluctuations in the output signal.
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mann, M. Büchler, N. Dillier, R. Houben, W. A. Dreschler,
M. Froehlich, et al., “Multicenter evaluation of signal enhance-
ment algorithms for hearing aids,” The Journal of the Acousti-
cal Society of America, vol. 127, no. 3, pp. 1491–1505, 2010.

[2] H. Teutsch and G. W. Elko, “First-and second-order adaptive
differential microphone arrays,” in Proc. Int. Workshop on
Acoustic Echo and Noise Control (IWAENC). Citeseer, 2001,
pp. 35–38.

[3] H. Puder, E. Fischer, and J. Hain, “Optimized directional pro-
cessing in hearing aids with integrated spatial noise reduction,”
in Proc. Int. Workshop on Acoustic Echo and Noise Control
(IWAENC), 2012, pp. 1–4.

[4] N. Roman, D. Wang, and Guy J. Brown, “Speech segregation
based on sound localization,” The Journal of the Acoustical
Society of America, vol. 114, no. 4, pp. 2236–2252, 2003.

[5] M. I. Mandel, R. J. Weiss, and D. P. W. Ellis, “Model-based
expectation-maximization source separation and localization,”
IEEE Transactions on Audio, Speech, and Language Process-
ing, vol. 18, no. 2, pp. 382–394, Feb 2010.

[6] S. Araki, T. Nakatani, H. Sawada, and S. Makino, “Blind
sparse source separation for unknown number of sources us-
ing gaussian mixture model fitting with dirichlet prior,” in
Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Process-
ing (ICASSP), 2009, pp. 33–36.

[7] N. Madhu and R. Martin, “A versatile framework for
speaker separation using a model-based speaker localization
approach,” IEEE Transactions on Audio, Speech, and Lan-
guage Processing, vol. 19, no. 7, pp. 1900–1912, Sept 2011.

[8] M. Zohourian and R. Martin, “Binaural speaker localiza-
tion and separation based on a joint ITD/ILD model and head
movement tracking,” in Proc. IEEE Int. Conf. Acoustics,
Speech, and Signal Processing (ICASSP), 2016, pp. 430–434.

[9] T. Van den Bogaert, J. Wouters, S. Doclo, and M. Moonen,
“Binaural cue preservation for hearing aids using an interaural
transfer function multichannel Wiener filter,” in Proc. IEEE
Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP),
2007, vol. 4, pp. IV–565–IV–568.

[10] D. Marquardt, E. Hadad, S. Gannot, and S. Doclo, “Theo-
retical analysis of linearly constrained multi-channel Wiener
filtering algorithms for combined noise reduction and binaural
cue preservation in binaural hearing aids,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 23,
no. 12, pp. 2384–2397, Dec 2015.

[11] E. Hadad, D. Marquardt, S. Doclo, and S. Gannot, “Theoret-
ical analysis of binaural transfer function MVDR beamform-
ers with interference cue preservation constraints,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol.
23, no. 12, pp. 2449–2464, Dec 2015.

[12] T. Lotter and P. Vary, “Dual-channel speech enhancement by
superdirective beamforming,” EURASIP Journal on Applied
Signal Processing, vol. 2006, pp. 175–175, 2006.

[13] M. Azarpour and G. Enzner, “Binaural noise reduction via cue-
preserving MMSE filter and adaptive-blocking-based noise
PSD estimation,” EURASIP Journal on Advances in Signal
Processing, vol. 2017, no. 1, pp. 49, Jul 2017.

[14] M. Zohourian, G. Enzner, and R. Martin, “Binaural speaker lo-
calization integrated into an adaptive beamformer for hearing
aids,” IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, vol. 26, no. 3, pp. 515–528, March 2018.

[15] H. Ye and R.D. DeGroat, “Maximum likelihood DOA estima-
tion and asymptotic Cramér-Rao bounds for additive unknown
colored noise,” IEEE Transactions on Signal Processing, vol.
43, no. 4, pp. 938–949, 1995.

[16] M. Zohourian, G. Enzner, and R. Martin, “On the use of beam-
forming approaches for binaural speaker localization,” in Proc.
ITG Speech Commun., 2016, pp. 1–5.

[17] H. Kayser, S. D. Ewert, J. Anemüller, T. Rohdenburg,
V. Hohmann, and B. Kollmeier, “Database of multichannel
in-ear and behind-the-ear head-related and binaural room im-
pulse responses,” EURASIP Journal on Advances in Signal
Processing, vol. 2009, pp. 6, 2009.

[18] M. Souden, J. Chen, J. Benesty, and S. Affes, “Gaussian
model-based multichannel speech presence probability,” IEEE
Transactions on Audio, Speech, and Language Processing, vol.
18, no. 5, pp. 1072–1077, July 2010.

[19] S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov,
“A consolidated perspective on multimicrophone speech en-
hancement and source separation,” IEEE/ACM Transactions
on Audio, Speech, and Language Processing, vol. 25, no. 4,
pp. 692–730, April 2017.

[20] P. Vary and R. Martin, Digital speech transmission: Enhance-
ment, coding and error concealment, John Wiley & Sons,
2006.

[21] R. Martin and G. Enzner, “Speech enhancement in hearing
aids - from noise suppression to rendering of auditory scenes,”
in Proc. IEEE Convention of Electrical and Electronics Engi-
neers in Israel, 2008, pp. 363–367.

[22] C.P. Brown and R.O. Duda, “A structural model for binaural
sound synthesis,” IEEE Transactions on Speech and Audio
Processing, vol. 6, no. 5, pp. 476–488, Sep 1998.

[23] D. Malah, R. V Cox, and A. J. Accardi, “Tracking speech-
presence uncertainty to improve speech enhancement in non-
stationary noise environments,” in Proc. IEEE Int. Conf.
Acoustics, Speech, and Signal Processing. IEEE, 1999, vol. 2,
pp. 789–792.

[24] Y. Ephraim and D. Malah, “Speech enhancement using a
minimum mean-square error log-spectral amplitude estimator,”
IEEE Transactions on Acoustics, Speech, and Signal Process-
ing, vol. 33, no. 2, pp. 443–445, 1985.

[25] P. Kabal, “TSP speech database,” McGill University, Database
Version, vol. 1, no. 0, pp. 09–02, 2002.

[26] A.W Rix, J.G. Beerends, M.P. Hollier, and A.P. Hekstra, “Per-
ceptual evaluation of speech quality (PESQ)-a new method for
speech quality assessment of telephone networks and codecs,”
in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Pro-
cessing (ICASSP), 2001, vol. 2, pp. 749–752.

[27] C.H. Taal, R.C. Hendriks, R. Heusdens, and J. Jensen,
“An algorithm for intelligibility prediction of time-frequency
weighted noisy speech,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 7, pp. 2125–2136, Sept
2011.

[28] C. Févotte, R.I. Gribonval, E. Vincent, et al., “BSS EVAL tool-
box user guide–revision 2.0,” 2005.

520


