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ABSTRACT

This paper studies the problem of frequency-invariant beamforming
with concentric circular microphone arrays (CCMAs). We devel-
op a beamforming algorithm based on an optimal approximation of
the beamformer’s beampattern with the Jacobi-Anger expansion. In
comparison with the existing frequency-invariant beamformers with
either circular microphone arrays (CMAs) or CCMAs, the develope-
d algorithm offers the following advantages: 1) it can mitigate the
deep-null problem encountered in CMAs and therefore has a con-
sistent directivity factor over the frequency range of speech signals;
2) it is more flexible in terms of steering flexibility and the resulting
beampattern can be steered to any direction; and 3) it does not re-
quire the microphones in different rings of the CCMA to be aligned,
which is very useful in practice, particularly when microphone ar-
rays with small and compact apertures have to be used.

Index Terms— Microphone arrays, concentric circular micro-
phone arrays, fixed beamforming, frequency-invariant beampattern,
white noise gain, directivity factor.

1. INTRODUCTION

Microphone array beamforming, an important problem in acoustic
signal processing for voice communications and human-machine in-
terfaces, has attracted a considerable amount of attention over the
past few decades. Many beamforming algorithms have been devel-
oped [1–14]. In real applications, circular microphone arrays (C-
MAs) are often used due to their steering ability [15–20]. One type
of CMAs, i.e., circular differential microphone arrays (CDMAs),
have been shown to be particularly useful in speech and audio ap-
plications since they can form frequency-invariant beampatterns and
attain high directional gains [21–26]. However, CDMAs may suffer
from the so-called deep-null problem, which is more serious at high
frequencies. This has become a limiting factor that restricts the ap-
plication of CDMAs in practical systems. Recently, a robust beam-
forming algorithm was developed with the use of concentric CDMAs
(CCDMAs). It can deal with the deep-null problem while achieving
good performance over the frequency range of interest. But the re-
sulting beampattern can only be steered to a limited number of di-
rections [26]. Moreover, with the existing methods, the geometry of
the CCDMA must satisfy perfect symmetry, i.e., 1) the number of
microphones in outer rings must be integral multiples of the number
of microphones in inner rings; and 2) microphones in different rings
need to be aligned. To deal with the aforementioned limitations, we
develop a frequency-invariant beamforming algorithm with CCMAs
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based on the Jacobi-Anger series expansions [17]. This method of-
fers the following advantages in comparison with existing methods:
1) it has full steering flexibility, i.e., the directivity pattern can be
steered to any directions in the plane in which the sensors are lo-
cated; 2) it can mitigate the deep-null problem; and 3) it does not
require alignment of microphones in different rings, which is very
useful in practical applications, especially when CCMAs with small
and compact apertures are used.

2. SIGNAL MODEL, PROBLEM FORMULATION, AND
PERFORMANCE MEASURES

Considering a farfield source signal (plane wave), that propagates
in an anechoic acoustic environment at the speed of sound, i.e.,
c = 340 m/s, and impinges on a CCMA composed of P rings, where
the pth (p = 1, 2, . . . , P ) ring, with a radius of rp, consists of Mp

omnidirectional microphones. Without loss of generality, we assume
that all the sensors are in the horizonal plane, the center of the CC-
MA coincides with the origin of the Cartesian coordinate system,
azimuthal angles are measured anticlockwise from the positive di-
rection of x axis, and sensor 1 of the array is placed on the positive
side of the x axis. The direction of the source signal to the array is
parameterized by the azimuth angle, θ. In this scenario, the steering
vector of length M , where M =

∑P
p=1Mp is the total number of

microphones, is defined as [1, 26]

d (ω, θ) =
[
dT1 (ω, θ) dT2 (ω, θ) · · · dTP (ω, θ)

]T
, (1)

where the superscript T is the transpose operator,

dp (ω, θ) =
[
eȷϖp cos (θ − ψp,1) eȷϖp cos (θ − ψp,2)

· · · eȷϖp cos
(
θ − ψp,Mp

) ]T
(2)

is the pth ring’s steering vector, ȷ is the imaginary unit with ȷ2 = −1,
ϖp = ωrp/c, with ω = 2πf being the angular frequency and f > 0
being the temporal frequency, and

ψp,m =
2π(m− 1)

Mp
(3)

is the angular position of themth (m = 1, 2, . . . ,Mp) array element
on the pth (p = 1, 2, . . . , P ) ring. In order to avoid spatial aliasing,
it is necessary that the interelement spacing is less than half of the
acoustic wavelength. In this paper, we consider fixed beamformers
with small values of the interelement spacing, so that this condition
easily holds [3, 5].

Beamforming aims at recovering a signal of interest (also called
the desired signal) from the noisy observation vector. In this pa-
per, we consider the general case where the desired signal comes

506978-1-5386-4658-8/18/$31.00 ©2018 IEEE ICASSP 2018



from the direction θs and the corresponding propagation vector is
d (ω, θs). Then, our objective is to design a desired, frequency-
invariant beampattern with its main beam pointing to the direction
θs. To do that, a complex weight, H∗

p,m(ω), is applied to the output
of the mth sensor on the pth ring, where the superscript ∗ denotes
complex conjugation. The weighted outputs are then summed to-
gether to form the beamformer’s output. The weights can be put
together into a vector of length M as

h (ω) =
[
hT1 (ω) hT2 (ω) · · · hTP (ω)

]T
, (4)

where

hp (ω) =
[
Hp,1(ω) Hp,2(ω) · · · Hp,Mp(ω)

]T (5)

is the weighting vector on the pth ring.
To let the source signal pass through the beamformer without

distortion, the distortionless constraint in the desired direction is
needed, i.e.,

hH (ω)d (ω, θs) = 1, (6)

where the superscript H is the conjugate-transpose operator.
Now, we give some useful measures, i.e., the beampattern (or di-

rectivity pattern), the directivity factor (DF), and the white noise gain
(WNG), to evaluate the performance of the proposed beamformer.

The beampattern describes the sensitivity of the fixed beam-
former to a plane wave impinging on the CCMA from the direction
θ [5]. Mathematically, it is defined as

B [h (ω) , θ] = hH (ω)d (ω, θ) (7)

=

P∑
p=1

Mp∑
m=1

H∗
p,m (ω) eȷϖp cos (θ − ψp,m).

The DF quantifies the ability of the beamformer in suppressing
spatial noise from directions other than the look direction. It is writ-
ten as [3, 5]

D [h (ω)] =

∣∣hH (ω)d (ω, θs)
∣∣2

hH (ω)Γd (ω)h (ω)
, (8)

where Γd (ω) is the pseudo-coherence matrix of the noise signal in
a diffuse (spherically isotropic) noise field, and the (i, j)th element
of Γd (ω) is

[Γd (ω)]ij = sinc

(
ωδij
c

)
, (9)

with δij = ∥ri − rj∥2 being the distance between micro-
phone i and j, ∥ · ∥2 being the Euclidean norm, ri, rj ∈
{r1,1, r1,2, . . . , rp,Mp , . . . , rP,MP }, and rp,m is the coordinates of
the mth microphone at the pth ring.

The WNG evaluates the sensitivity of a beamformer to some of
its imperfections. It can be written as [3]

W [h (ω)] =

∣∣hH (ω)d (ω, θs)
∣∣2

hH (ω)h (ω)
. (10)

3. DESIRED BEAMPATTERNS

In our context, the objective of beamforming is to find a proper
beamforming filter, h (ω), so that its beampattern is as close as pos-
sible to a desired (target) frequency-invariant beampattern. In acous-
tic and speech applications, we generally use the frequency-invariant
beampatterns of different orders that were developed in the context
of differential microphone arrays (DMAs) as the desired beampat-
terns [2, 4, 5]. As shown in [5], an N th-order frequency-invariant
beampattern with its main beam pointing to the direction of 0◦ is
given by

B (aN , θ) =

N∑
n=0

aN,n cos (nθ) = aTNpc (θ) , (11)

where aN,n, n = 0, 1, . . . , N , are real coefficients, and

aN =
[
aN,0 aN,1 · · · aN,N

]T
,

pc (θ) =
[
1 cos θ · · · cos (Nθ)

]T
.

It can be checked that B (aN , θ) is symmetric about the axis 0 ↔ π.
The values of the coefficients aN,n, n = 0, 1, . . . , N , in (11) deter-
mine the shape of the directivity pattern as well as the corresponding
DF. In the direction of the main beam, i.e., θ = 0◦, the directivity
pattern should be equal to 1, i.e., B (aN , 0

◦) = 1. Therefore, we
have

N∑
n=0

aN,n = 1. (12)

We write the directivity pattern corresponding to a steering angle
θs as [17]:

B (b2N , θ − θs) =
N∑

n=−N

b2N,ne
ȷn(θ−θs) (13)

= [Υ (θs)b2N ]T pe (θ)

= cT2N (θs)pe (θ)

= B [c2N (θs) , θ] ,

where {
b2N,0 = aN,0

b2N,i = b2N,−i =
1

2
aN,i, i = 1, 2, . . . , N

,

and

Υ (θs) = diag
(
eȷNθs , . . . , 1, . . . , e−ȷNθs

)
,

b2N =
[
b2N,−N · · · b2N,0 · · · b2N,N

]T
,

pe (θ) =
[
e−ȷNθ · · · 1 · · · eȷNθ

]T
,

c2N (θs) = Υ (θs)b2N

= [c2N,−N (θs) · · · c2N,0 (θs) · · · c2N,N (θs)]
T .

Clearly, the main beam of (13) points in the direction θs and
B (b2N , θ − θs) is symmetric about the axis θs ↔ θs + π. From
(13), it is clearly seen that a rotation of the directivity pattern corre-
sponds to a simple modification of its coefficients.
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4. BEAMPATTERN DESIGN

In this section, we show how to derive the beamforming filter, h (ω),
such that the designed beampattern, B [h (ω) , θ], approaches the de-
sired symmetric directivity pattern, B (aN , θ).

It has been shown that the optimal approximation of the beam-
former’s beampattern with a CMA from a least-squares error (LSE)
perspective is the Jacobi-Anger expansion [17]. Following this prin-
ciple, the Jacobi-Anger expansions of the exponential function in the
beamformer’s beampattern with a CCMA is [27]

eȷϖp cos (θ − ψp,m) =

∞∑
n=−∞

ȷnJn (ϖp) e
ȷn(θ−ψp,m), (14)

where Jn(ϖp) is the nth-order Bessel function of the first kind with
J−n (ϖp) = (−1)nJn (ϖp). Substituting (14) into the definition of
the beamformer’s beampattern with a CCMA in (7) and limiting the
Jacobi-Anger series to the order N , we obtain

BN [h (ω) , θ] ≈
P∑
p=1

Mp∑
m=1

H∗
p,m (ω)

N∑
n=−N

ȷnJn (ϖp) e
ȷn(θ−ψp,m)

=

N∑
n=−N

eȷnθȷn
P∑
p=1

Mp∑
m=1

Jn (ϖp) e
−ȷnψp,mH∗

p,m (ω)

=

N∑
n=−N

eȷnθc2N,n (θs) , (15)

where

ȷn
P∑
p=1

Mp∑
m=1

Jn (ϖp) e
−ȷnψp,mH∗

p,m (ω) = c2N,n (θs) . (16)

This gives the relation between the beamformer’s beampattern with
a CCMA and the N th order desired directivity pattern. Based up-
on this relationship, the beamforming filter, h (ω), can be obtained
through solving a linear equation constructed from the optimal ap-
proximation of the beampattern with the Jacobi-Anger series expan-
sions. By writing (16) in a vector form, we have

ȷnψT
n
(ω)h∗ (ω) = c2N,n (θs) , (17)

where

ψ
n
(ω) =

[
Jn (ϖ1)ψ

T
n,1, Jn (ϖ2)ψ

T
n,2

. . . , Jn (ϖP )ψ
T
n,P

]T
(18)

is a vector of length M , with n = ±1,±2, . . . ,±N ,

ψn,p =
[
e−ȷnψp,1 e−ȷnψp,2 · · · e−ȷnψp,Mp

]T
, (19)

and p = 1, 2, . . . , P .
From (17), we obtain the following equation:

Ψ (ω)h (ω) = J∗Υ∗ (θs)b2N , (20)

where

J = diag

[
1

ȷ−N
, . . . , 1, . . . ,

1

ȷN

]
(21)
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Fig. 1. Illustration of a CCMA with two rings, where each ring
consists of 4 omnidirectional microphones: (a) microphones in two
rings are aligned and (b) microphones in two rings are not aligned.

is a (2N + 1)× (2N + 1) diagonal matrix and

Ψ (ω) =



ψH
−N

(ω)

...
ψH

0
(ω)

...
ψH
N
(ω)


(22)

is a (2N + 1)×M matrix.
Generally, with a CCMA, we assume that P ≥ 2 and M >

(2N + 1). The minimum-norm solution of (20) is then

hMN (ω) = ΨH (ω)
[
Ψ (ω)ΨH (ω)

]−1

J∗Υ∗ (θs)b2N . (23)

With (23), we can design any desired symmetric directivity pattern
with a CCMA. For simplicity, in the reminder of the paper, we call
the proposed beamformer as FIB-CCMA.

In comparison with the conventional frequency-invariant beam-
former, i.e., the CCDMA beamformers [26], the proposed beam-
former have the following advantages.

1) Full steering flexibility. The proposed FIB-CCMA can per-
fectly steer the beampattern to any look direction in the sensor
plane. In comparison, the beamformer in [26] can perfectly
steer only to M1 different directions, i.e., 2π(m− 1)/M1.

2) Structural flexibility. The algorithms in [26] requires the mi-
crophones in different rings of the CCDMA to be aligned as
shown illustrated in Fig. 1(a). The proposed FIB-CCMA does
not need this requirement as illustrated in Fig. 1(b). We can
set the angular position of the mth array element on the pth
ring [in (3)] as

ψp,m = ψp,0 +
2π(m− 1)

Mp
. (24)

The fact that the positions of microphones in different rings
do not need to be aligned gives much flexibility in designing
an array in practical applications. This is very useful espe-
cially when using CCMAs with small and compact apertures.

5. SIMULATIONS

In this section, we study the performance of the developed beam-
forming algorithm for the design of the first-order hypercardioid [5].
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Fig. 2. DF and WNG of the FIB-CMA and FIB-CCMA for the de-
sign of the first-order hypercardioid: (a) DF and (b) WNG. Condi-
tions of simulation: θs = 0◦.

The desired beampattern is given by (13) where N = 1 and the co-
efficients are given by b2N = [1/3 1/3 1/3]T . We compare the
performance of the FIB-CCMA with the FIB-CMA (a special case
of the FIB-CCMAs with one ring). The two FIB-CMAs are designed
withM = 4, r = 3.0 cm (FIB-CMA-I), andM = 4 and r = 2.2 cm
(FIB-CMA-II), respectively. The FIB-CCMA is configured with t-
wo rings, which is a combination of the two CMAs, i.e., M1 = 4,
M2 = 4, r1 = 3.0 cm, r2 = 2.2 cm. For comparison, we consider
two cases: 1) two rings are aligned [as showed in Fig. 1 (a)], i.e.,
ψ1,0 = ψ2,0 = 0 (FIB-CCMA-I); 2) two rings are not aligned [as
showed in Fig. 1 (b)], i.e., ψ1,0 = 0, ψ2,0 = 45◦ (FIB-CCMA-II).

Figure 2 gives plots of the DFs and WNGs of the FIB-CMAs
and FIB-CCMAs. As one can see, both FIB-CMAs suffers from
serious degradation in DFs and WNGs due to the so-called null-
s problem [17, 26]. This is because the denominators of the filter
coefficients are a function of Bessel functions, and the zeros of the
Bessel function leads to nulls [17, 26]. This problem is more seri-
ous with FIB-CMA-I than with FIB-CMA-II because the increase
of the array aperture (radius) leads to more nulls in the frequen-
cy range of interest [26]. In comparison, the two FIB-CCMAs
have almost frequency-invariant performance in the studied frequen-
cy range, which verifies that the use of CCMAs can help mitigate
the deep nulls problem. The two FIB-CCMAs have similar perfor-
mance.

Figure 3 plots beampatterns of FIB-CCMA-I with θs ∈
{0◦, 30◦, 45◦, 120◦}. As can be seen, the FIB-CCMA-I has identi-
cal beampattern in different directions and all beampatterns are sym-
metric about the axis θs ↔ θs + π.

6. CONCLUSIONS

In this paper, we studied the problem of designing frequency-
invariant beamformers with CCMAs. We proposed an FIB-CCMA
algorithm based on an optimal approximation of the beampattern
with the Jacobi-Anger series expansions. The developed beam-
former can mitigate the deep nulls problem as compared to to ex-
isting methods with CDMAs and the deduced beampattern can be
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Fig. 3. Beampatterns of the FIB-CCMA for different steering di-
rections, θs: (a) θs = 0◦, (b) θs = 30◦, (c) θs = 45◦, and (d)
θs = 120◦. Conditions of simulation: f = 1000 Hz.

steered to any wanted direction in the plane where the sensors are
located. Moreover, the developed method does not require to align
the microphones in different rings, which is convenient and useful
in real applications, particularly when arrays with small and com-
pact apertures have to be used. Simulation results demonstrated the
advantage of this proposed algorithm over conventional frequency-
invariant beamformers with either CMAs or CCMAs.

7. RELATION TO PRIOR WORK

Microphone array beamforming has long been a very importan-
t problem in acoustic, speech, and audio signal processing and many
beamforming algorithms have been developed over the last few
decades, such as the delay-and-sum, filter-and-sum, superdirective,
and differential beamformers [10, 12, 31–33]. Among those, beam-
formers with CDMAs have attracted much R&D interest for their
frequency-invariant response and steering flexibility [21, 23–25].
However, conventional beamformers with CDMAs, e.g., algorithms
in [21], suffers from two problems: 1) the deep-null problem in both
DF and WNG (so the beamformer cannot perform consistently and
robustly at different frequencies), and 2) limited steering ability ( so
the beampattern, without any changes, can only be steered to a limit-
ed number of directions). To deal with the first problem, we studied
in [17] beamforming with CCMAs. The resulting beamformers are
free from deep nulls in either DF or WNG but they lack steering
flexibility. To deal with the second problem, we recently developed
a new approach with CDMAs in [26]. The resulting beamformer has
full steering flexibility, i.e., the beampattern can be perfectly steered
to any directions, but it still suffers from the deep-null problem. This
paper is basically a generalization of the work in [17] and [26]. We
developed an FIB-CCMA algorithm based on Jacobi-Anger series
expansions, which on the one hand does no longer suffer from the
deep-null problem, and on the other hand has full steering flexibility.
Moreover, it does not require alignment of microphones in different
rings of the CCMA.
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