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ABSTRACT
This study proposes a principled method to jointly determine the
placement of acoustic sources (loudspeakers) and sensors (control
points/microphones) in sound field control. The goal of this setup
is to efficiently produce a sound field using multiple loudspeakers,
approximately matching a target sound field over a region of inter-
est. Therefore, the loudspeaker and control-point placement prob-
lem can be seen as the problem of finding interpolating functions
(associated with individual loudspeaker sound fields) and sampling
points (corresponding to control points or microphones) to approxi-
mate the target sound field in the given domain. We here solve this
problem using the empirical interpolation method, originally devel-
oped for the numerical analysis of partial differential equations. The
proposed method enables a joint determination of loudspeaker and
control-point placement, from a large set of candidate locations, in-
dependently of the desired sound field. Numerical simulation results
indicate that accurate and stable sound field control can be achieved
by the proposed method, with significantly better results than with
random and regular placements.

Index Terms— source and sensor placement, sound field con-
trol, sound field reproduction, interpolation, magic points

1. INTRODUCTION

Sound field control is aimed at synthesizing a desired sound field in-
side a region of interest. It can be applied to various settings includ-
ing high fidelity audio systems and noise cancellation systems. A
typical strategy for the sound field control problem is the use of a dis-
tributed loudspeaker array, allowing the control of sound pressures
at multiple discrete positions inside the region [1–3]. In general,
the inverse of the given transfer function matrix between loudspeak-
ers and control points is calculated in a (regularized) least-square-
error sense. The positions of the loudspeakers and control points
(microphones) must be carefully chosen because they have a great
effect not only on the control accuracy but also on the stability of
the inverse filter. For example, when the control points of the sound
pressures are arranged on the boundary of the enclosed space, it is
known that the sound field inside this space cannot be uniquely deter-
mined, which leads to significantly unstable inverse filters [4]. The
estimated inverse filter can also be sensible to perturbations in the
transfer functions.

In the context of sound field reproduction, a similar problem
has been addressed by modeling a sound field in a continuous sys-

tem [5–8]. The positions of the loudspeakers and microphones are
generally determined by regularly discretizing the continuous space.
The above-mentioned non-uniqueness problem is typically avoided
by using microphones mounted on an acoustically-rigid object or di-
rectional microphones [7, 9–11]. Although this regular placement
will perform well when the array has a simple shape, such as sphere,
plane, line, and circle, that is not obvious for more complicated ge-
ometries. Besides, their performance depends on the acoustic char-
acteristics of the sound field to be controlled.

As discussed above, in the sound field control and reproduction
problems, how to place the loudspeakers and control points (or mi-
crophones) is still an open problem, especially for an arbitrary shape
of the control region. Several attempts have been made to optimize
the loudspeaker placement [12,13]. However, even though the place-
ment of loudspeakers and control points both have a significant im-
pact on performance, to the best of our knowledge their joint place-
ment has not yet been investigated. Furthermore, current algorithms
for loudspeaker placement are optimized on a single target sound
field, or by averaging over a limited set of target sound fields - this
hinders their practical applicability. Independently, the microphone
placement problem has been addressed in the context of sensor array
design [14, 15].

Here, we propose a method to jointly determine these positions
from candidate positions independently of the desired sound field.
We consider the loudspeaker and control point placement problem as
a problem of finding interpolating functions and associated sampling
points for approximating these transfer functions. This interpreta-
tion motivates us to apply a method called empirical interpolation
method (EIM) [16,17], which was originally proposed in the field of
numerical analysis of partial differential equations. Numerical sim-
ulations are conducted to evaluate the proposed method, that is com-
pared to regular and random sampling schemes in a two-dimensional
(2D) sound field.

2. PROBLEM STATEMENT

We assume that the sound field inside a region of interest Ω is con-
trolled by L loudspeakers [18]. The synthesized sound pressure
usyn(r,ω) of the frequency ω at the position r is represented by
a linear combination of transfer functions of the loudspeakers.

usyn(r,ω) =
L∑

l=1

dl(ω)gl(r,ω), (1)
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where dl(ω) and gl(r,ω) are the driving signal and the transfer func-
tion (i.e., Green’s function) at r of the lth loudspeaker, respectively.
Hereafter, ω is omitted for notational simplicity. By denoting the
desired pressure field as udes(r) (r ∈ Ω), the objective function J
for the sound field control problem can be described as

J =

∫

r∈Ω

∣∣∣∣∣

L∑

l=1

dlgl(r)− udes(r)

∣∣∣∣∣

2

dr. (2)

Therefore, it is necessary to estimate dl that minimizes J .
However, this minimization problem is difficult to solve directly

because (2) includes an integral with respect to r: it is difficult to
measure or estimate gl(r) in the entire Ω for continuous r. A typical
strategy for solving it is to discretize r inside Ω, which leads to the
following linear equation:

udes = Gd, (3)

where udes ∈ CM is the vector of the desired pressures at M dis-
crete positions inside Ω, G ∈ CM×L is the matrix of the transfer
functions, and d ∈ CL is the vector of the driving signals. Then, d
can be obtained by

d̂ = G†udes, (4)

where (·)† represents Moore-Penrose pseudoinverse. Since the cal-
culation of the inverse of G becomes frequently unstable, it is usu-
ally necessary to regularize (4). For instance, the use of Tikhonov
regularization is represented as

d̂ =
(
GHG+ λI

)−1
GHudes, (5)

where λ is the regularization parameter.
The question is how to determine the discrete positions and num-

ber of loudspeakers and control points (microphones). Since mea-
suring the transfer functions by using microphones is necessary to
obtain G, it is preferable that the number of sampling positions is as
small as possible. The number of available loudspeakers is also lim-
ited in general. Besides, excessively dense placement of the micro-
phones and loudspeakers leads to extremely unstable inverse filters.
Their positions also have a great effect on the control accuracy and
filter stability. For example, the sampling only on the boundary of Ω
should be avoided because of the non-uniqueness problem.

3. SOURCE AND SENSOR PLACEMENT USING MAGIC
POINTS

We consider EIM for the above-mentioned problem. EIM was first
presented in [16] in the context of numerical analysis of partial dif-
ferential equations based on the reduced basis method [19]. In [17],
EIM was discussed as a general interpolation procedure.

3.1. Empirical interpolation method in general case

Given a functional space V of large or infinite dimension defined
on a domain Ω and an order Q, the EIM selects Q interpolating
functions and Q sampling points in Ω (so-called magic points). An
approximation of a function is then obtained by matching a linear
combination of the interpolating functions with values of the func-
tion at the magic points, i.e., by solving a linear system of equations.
Interpolating functions and sampling points are chosen such that this
system remains stable when Q increases.

Following [17], the first interpolation function h1 is chosen as
v ∈ V with maximum L∞-norm in Ω, and the first sampling point
x1 is chosen as the point where |h1| attains its bounds. The sub-
sequent interpolating functions and sampling points are iteratively
identified. Given a set of Q interpolating functions hq and sampling
points xq , the next interpolating function hQ+1 and the next sam-
pling point xQ+1 are found by the following greedy algorithm:

1. The interpolation IQ(v) for any v ∈ V is computed using
hq and xq identified so far. This interpolation is obtained by
solving the following equation:

IQ(v) =
Q∑

q=1

cqhq, (6)

where cq is the solutions of

v(xq) =
Q∑

q′=1

cq′hq′(xq), (7)

for 1 ≤ q ≤ Q.
2. v that maximizes the L∞-norm of the error between v and its

interpolation IQ(v) is taken as hQ+1.
3. The point of the maximal absolute value of the error between

v(x) and its interpolation IQ(v) is taken as xQ+1.
This procedure is repeated until the error between any function of V
and its interpolation is less than a predefined threshold value in L2-
norm, or the order Q reached to the predefined maximum value. This
algorithm ensures that the linear system yielding the approximation
of a given function remains sufficiently stable, which means that the
condition number of the matrix to invert does not increase too fast.

3.2. Empirical interpolation method in source and sensor place-
ment

Now, we apply EIM to sound field control problem. The candidate
loudspeakers are assumed to be continuously distributed on a bound-
ary of an enclosed space D including Ω and the boundary is denoted
as ∂D. The functional space V is the set of the transfer functions
of the candidate loudspeakers. The EIM will provide a finite set
of loudspeakers that approximate transfer functions of an arbitrary
loudspeaker with sufficient accuracy.

Suppose that the target space is free-field and the transfer func-
tions are represented as monopole. The sound field inside D can be
represented by the single layer potential as [20]

u(r) =

∫

r′∈∂D

ϕ(r′)G(r|r′)dr′ (r ∈ D), (8)

where ϕ is the density and G is the free-field Green’s function. By
approximating the Green’s function on ∂D using the chosen loud-
speakers of monopole, any sound field can be approximated by a
finite sum of the Green’s functions, i.e., by using a finite number of
loudspeakers, on the basis of the principle of EIM. Also in a general
reverberant case, by using the chosen set of loudspeakers, it is guar-
anteed that the transfer functions of the distribution of the candidate
loudspeakers on ∂D can be approximated. The EIM also provides
positions of the control points (microphones) inside Ω as sampling
points to obtain the driving signals of the loudspeakers with a stable
inverse filter.

In practice, the loudspeakers and sampling points are chosen
from a predefined large discrete set of points on ∂D and inside Ω,
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Algorithm 1 Proposed algorithm of source and sensor placement for
single frequency

Input: A set of candidate points yl (l ∈ {1, . . . , L}) and xm (m ∈
{1, . . . ,M}), a transfer function matrix G ∈ CM×L, and target
error tolerance ϵtol.

Output: A set of loudspeaker and microphone indices.
Set Q = 1
while ϵ > ϵtol do

Select the loudspeaker index

lQ = arg max
l=1,...,L

∥∥G·,l − IQ−1(GmQ−1,l)
∥∥
∞

and the corresponding index of control point

mQ = arg max
m=1,...,M

∣∣∣GmlQ −
(
IQ−1

(
GmQ−1,lq

))
m

∣∣∣ .

Define the error by

ϵ = max
l=1,...,L

∥∥G·,l − IQ−1

(
GmQ−1,l

)∥∥
2
.

and set Q := Q+ 1
end while

respectively. The proposed algorithm is summarized in Algorithm 1.
The discrete set of possible sampling positions inside Ω is defined as
xm (m ∈ {1, . . . ,M}), and candidate loudspeakers are located on
a set of points yl (l ∈ {1, . . . , L}). This algorithm makes it possi-
ble to choose proper m and l for approximating the transfer function
matrix G with the target error tolerance ϵtol. This transfer function
matrix G will be calculated by a numerical acoustic simulation of
the target space in advance. In Algorithm 1, the elements of ma-
trices are represented by its subscript. For example, G·,l is the lth
column and GmQ−1,l is the submatrix of (mQ−1, l)th elements of
G where mQ−1 ∈ Nq−1 is the vector of selected indexes of m by
the Q − 1 iterations. It is also possible to stop the iteration when
Q reached to the maximum available number of microphones and
loudspeakers.

Algorithm 1 is applied to the transfer function matrix of a sin-
gle frequency. The frequency of interest for the sound field control,
however, can be broadband. In this case, the input of the algorithm
becomes the third order tensor of the transfer functions including
the dimension of frequency, i.e., G ∈ CM×L×K , where K is the
number of frequencies. The proposed method can be applied to the
broadband case by evaluating the ℓ∞-norm for the matrix G·,l,· and
vector Gm,lQ,· in line 1 and 2 of Algorithm 1, respectively.

4. EXPERIMENTS

Numerical simulations are conducted to evaluate the proposed
method in a 2D sound field. We use FreeFem++ [21], a finite
element method (FEM) solver, for acoustic simulation. We assumed
a parallelogram room as depicted by the bold line in Fig. 2. The
specific acoustic impedance ratio of each wall was set at 131.3 for
all the frequencies, which corresponds to an absorption ratio of 0.03.
Candidate loudspeaker locations are located along the boundary of
the rectangular region in size of 2.4×2.8 m2. The number of candi-
date loudspeakers is 256 and the rectangular boundary is discretized
at regular intervals. The desired region is set as a rectangular region
of 0.8×1.0 m2, which is discretized at every 0.04 m to construct
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Fig. 1: Condition number and SDR with respect to frequency.

candidate control points. The candidate loudspeakers and control
points are depicted by the dotted and dashed lines, respectively, in
Fig. 2.

In the proposed method, the loudspeaker and control point loca-
tions are chosen from these candidate locations. We compared the
proposed method with the random and regular placement. In the
random placement, the same numbers of loudspeakers and control
points as those of the proposed method are randomly chosen from
the candidates. The rectangular boundaries of the loudspeaker can-
didate and the desired region are regularly discretized for the regular
placement with the same number of loudspeakers and control points.
We hereafter refer the proposed, random, and regular placements as
Proposed, Random, and Regular, respectively.

We define signal-to-distortion ratio (SDR) for evaluation as

SDR(ω) = 10 log10

∫
Ω
|udes(r,ω)|2dr∫

Ω
|usyn(r,ω)− udes(r,ω)|2dr

, (9)

where udes(·) and usyn(·) are the desired and synthesized pressure
fields, respectively. The desired sound field is a plane wave field and
its arrival angle is varied from 0 to 350 deg at 10 deg intervals.

First, we compare the reproduction performance of the plane
wave field in the single-frequency case. Next, a more practical situ-
ation of the broadband case is demonstrated.

4.1. Single-frequency case

In the single frequency case, the numbers and locations of the loud-
speakers and control points are determined at each frequency. We
set ϵtol of Algorithm 1 as 1.0 × 10−2. The driving signals of the
loudspeakers are obtained by using (4) without regularization.

The condition number of G and SDR with respect to the fre-
quency are shown in Fig. 1. The number of loudspeakers and con-
trol points is also plotted in Fig. 1a in red. Note that the placement
of Random is randomly determined at each frequency. As expected,
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Fig. 2: Selected positions of loudspeakers and microphones for
800 Hz. Black dots and cross marks represent loudspeakers and con-
trol points, respectively.
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Fig. 3: Reproduced sound pressure distributions at 800 Hz.
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Fig. 4: Normalized Squared error distributions at 800 Hz.
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the number of loudspeakers and control points required for the repro-
duction increases as the frequency. Although the condition number
of Proposed slightly increases as the frequency, it is the smallest
compared to those of Random and Regular except 2000 Hz. The
highest SDR is also achieved by Proposed as shown in Fig. 1b. The
Regular curve features sharp dips in SDR and corresponding peaks
in condition number at a number of frequencies. This is due to the
non-uniqueness problem discussed above.
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Fig. 6: SDR with respect to frequency for broadband case.

Figure 2 is the selected locations of loudspeakers and control
points for 800 Hz, which are indicated by black dots and cross
marks, respectively. Figures 3 and 4 are the reproduced pressure and
squared error distributions, respectively, by using these placements.
The region of high reproduction accuracy is limited in Random and
the reproduction accuracy of Regular is poor. On the other hand, a
high reproduction accuracy is achieved by Proposed over the entire
desired region. To demonstrate the stability of the inverse filter, we
also plot the histogram of the output power of the driving signals in
Fig. 5. Proposed also results in a significantly lower average/max
power of the driving signals.

4.2. Broadband case

In most practical use cases, the sound field control has to be broad-
band. The proposed method is applied using the transfer function
calculated by FEM from 40 to 1200 Hz at intervals of 40 Hz. The
threshold value ϵtol is again 1.0×10−2. The number of loudspeaker
and control-point locations chosen by Proposed is 33. The same
number is used for Random and Regular methods. To obtain the
driving signals, we added noise to the transfer functions so that the
signal-to-noise ratio becomes 20 dB to simulate a mismatch in the
transfer functions. In this noisy scenario, the regularization for cal-
culating the inverse of the transfer functions is necessary; therefore,
the driving signals are obtained by using (5). The regularization pa-
rameter λ was chosen in the range [10−7, 100], maximizing SDR.

Figure 6 is the SDR with respect to the frequency from 200 to
1200 Hz. As in the single-frequency case, the SDR of Regular
sharply decreases at several frequencies. Above 200 Hz, Proposed
consistently outperforms in terms of SDRs over the whole frequency
range.

5. CONCLUSION

This study shows that there is a clear benefit in jointly placing loud-
speakers and control points for the sound field control and reproduc-
tion problem. The so-called empirical interpolation method leads to
a low-complexity procedure, providing optimal positions indepen-
dently of the desired sound field. In the numerical experiments, this
achieves significantly higher SDR and lower condition number than
random and regular placements. Further experiments should confirm
these findings, in a 3D setting, and with actual acoustic experiments.
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