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ABSTRACT

The mode matching based multizone reproduction has mainly been
focused on a purely 2D theory which is inadequate to fit the 3D re-
ality. Its extension to the 3D theory however requires many sec-
ondary sources and a high computational complexity. In this paper, a
weighted mode matching approach is developed for 2.5D multizone
reproduction. The multizone soundfield is reproduced in the hori-
zontal plane within a circular control region using the loudspeakers
modelled as 3D point sources. We propose weighting the Bessel-
spherical harmonic modes for 2.5D reproduction and a matching be-
tween the desired and reproduced soundfields over the entire control
region. Simulation results show that in comparison with the con-
ventional 2.5D reproduction method a more accurate reproduction is
achieved using the proposed weighting approach.

Index Terms— Multizone reproduction, 2.5D reproduction,
mode matching, weighting approach, reverberant rooms

1. INTRODUCTION

Multizone reproduction aims to reproduce sounds over multiple re-
gions of space simultaneously and independently using a single ar-
ray of loudspeakers [1]. This arrangement allows sound zones to be
produced at any desired location and also the listener to freely move
between zones thus can provide significant flexibility and has a wide
range of audio applications [2, 3]. Some well-known methods for
multizone reproduction include acoustic contrast control (ACC) [4-
8], pressure matching (PM) [9-12], the combination of ACC and P-
M [13-16], and mode matching based reproduction [17-20].

While the ACC and PM methods focus on point-to-point audio
processing, the mode matching approach is based on representing
the soundfields within different zones through a spatial harmonic
expansion. The local soundfield coefficients are transformed to an
equivalent global soundfield using the harmonic translation theorem
and the loudspeaker weights are designed to create this global de-
sired soundfield [17-21]. The mode matching approach can provide
insights into the multizone problem. For example, through the modal
domain analysis, a theoretical basis is established for creating two
sound zones with no interference [19]. Modal-domain sparsity anal-
ysis shows that a significantly reduced number of microphone points
could be used quite effectively for multizone reproduction over a
wide frequency range [18]. A parameter, the coefficient of realis-
ability, is developed to quantitatively analyze the achievable repro-
duction performance [20].
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The mode matching approach however has been mainly consid-
ered in the two-dimensional (2D) case, i.e., both the virtual source
generating the desired soundfield and the secondary source used for
reproduction are modelled as 2D near-field or far-field sources. Even
though the theory can be easily extended to the three-dimensional
(3D) case. Given the same reproduction setup, the 3D approach that
controls sound within a sphere requires many secondary sources and
a higher computational complexity.

In this work, we investigate the problem of controlling 2D mul-
tizone soundfields using 3D secondary sources. This is a more prac-
tical setup as on the one hand the same number of loudspeakers as
in the 2D reproduction is required and on the other hand loudspeak-
ers are more accurately modelled as 3D point sources. However,
there is intrinsic dimensionality mismatch between the 2D desired
soundfields and 3D secondary sources, also known as 2.5D repro-
duction [22-26]. To solve the dimensionality mismatch problem, the
mode matching approach is applied where the desired and generat-
ed soundfields are decomposed through spatial harmonics and the
matching at the center of the setup is applied. Analytical solution-
s are derived for a circular array of secondary sources [23-25,27].
However, this approach has mainly been verified for the single zone
case, which is also located at the center.

We propose a weighted mode matching approach for 2.5D mul-
tizone reproduction in this paper based on the concept outlined in
[18] for 2D and 3D reproduction. Instead of referencing the synthe-
sized soundfield to the desired one at a particular point or radius, the
matching is over the entire control region. This is based on weighting
the Bessel-spherical harmonic modes. The 2D multizone reproduc-
tion using mode matching is revisited in Sec. 2. Section 3 introduces
the dimensionality mismatching problem in 2.5D reproduction and
proposed two weighted mode matching algorithms. In Sec. 4, the
proposed methods are evaluated in comparison with the convention-
al 2.5D reproduction approach.

2. REVIEW: 2D MULTIZONE REPRODUCTION

The objective of the general multizone problem is to produce a de-
sired spatial soundfield in each of Q non-overlapping sound zones.
As shown in Fig. 1, we assume that each sound zone q has a radius
Rq and its centre is denoted by Oq with respect to the global origin
O. Any observation point within a sound zone is represented by xq
with respect to Oq , or x = xq + Oq with respect to O. All sound
zones are within a general region of interest of radius r ≤ r0.

2.1. Soundfield model

The soundfield at any point xq ≡ (‖xq‖, x̂q) within a sound zone
in 2D cylindrical coordinates can be expressed in the form
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Fig. 1. Geometry of multizone reproduction.

P
(q)
d (xq, k) ≈

Nq∑
m′=−Nq

α
(q)

m′ (k)Jm′(k‖xq‖)eim
′x̂q (1)

where x̂q = φxq , k = 2πf/c is the wave number with f being the
frequency and c the speed of sound. Jm′(k‖xq‖) is the cylindrical
Bessel function of order m′, and α(q)

m′ (k) is the corresponding m′th
order soundfield coefficient to describe a spatial soundfield with re-
spect to Oq . Given the radius of the local sound zone Rq , the wave
number k, the truncation order is Nq = dekRq/2e [27], where d·e
denotes the ceiling function and e is the Euler’s number.

Analogous to (1), the soundfield at the point x = (‖x‖, x̂) in
the global system can be represented by a finite number of cylindrical
harmonics

Pd(x, k) ≈
N0∑

m=−N0

βm(k)Jm(k‖x‖)eimx̂, (2)

where N0 = dekr0/2e and r0 is the radius of the general region of
interest including all sound zones.

These local soundfield coefficients α(q)

m′ (k) can be related to the
global soundfield coefficients βm(k) using the Bessel function addi-
tion theorem [28], that is

Jm(k‖x‖)eimx̂ =

Nq∑
m′=−Nq

Jm−m′(krq)e
i(m−m′)φqJm′(k‖xq‖)eim

′x̂q

(3)

given x = xq +Oq and Oq ≡ {rq, φq} in the global system.
Using the matrix-vector notation, we have

aq = T qb, (4)

where aq = [α
(q)
−Nq

(k), . . . , α
(q)
Nq

(k)]T and b = [β−N0(k), . . . ,

βN0(k)]
T are column vectors of length (2Nq + 1) and (2N0 + 1),

respectively. T q is the (2Nq + 1)× (2N0 + 1) matrix representing
the translation from the global system to the local system, that is
[T q]m′+Nq+1,m+N0+1 = Jm−m′(krq)e

i(m−m′)φq .

2.2. Lagrangian formulation and control

The multizone reproduction problem in the modal domain is for-
mulated as finding the global soundfield coefficients b to generate
a desired soundfield in the bright zone Db characterised by its local
coefficients ab with constraints on the sound energy in the dark zone
Dd and the energy of the entire global soundfield [20]. That is

min
b
‖T bb− ab‖2 (5)

subject to ‖T db‖2 ≤ ed (5a)

‖b‖2 ≤ eg. (5b)

T b and T d are the translation matrices of the local bright zone and
dark zone from the global system, respectively.

We write the optimisation problem posed in Eq. (5) as a La-
grange cost function,

argmin
b

L(b) =

‖T bb−Ab‖2 + λ1(‖T db‖2 − ed) + λ2(‖b‖2 − eg),
(6)

where λ1 and λ2 are positive Lagrange multipliers. The solution that
minimises L(b) is

b = [T ∗bT b + λ1T
∗
dT d + λ2I]

−1T ∗bab, (7)

where (·)∗ denotes the Hermitian transpose and I is an identity ma-
trix of dimension 2N0 + 1. This formulation can easily be extended
to the case of Q sound zones, by augmenting additional dark zone
constraints of the form of (5a) to the Lagrange cost function (6).

3. PROPOSED 2.5D REPRODUCTION

3.1. Theory

An array ofL loudspeakers is used for reproduction and its generated
global soundfield can be written as

P (x, k) =

L∑
`=1

d`(k)G`(x, k), (8)

where G`(x, k) represents the acoustic transfer function (ATF) be-
tween the `th loudspeaker and the observation point x in the global
system and d` is the loudspeaker weight.

The ATF is parameterised in the modal domain as

G`(x, k) ≈
N0∑

m=−N0

N0∑
n=|m|

γmn (`, k)jn(k‖x‖)Y mn (
π

2
, φx)

(9)

where γmn (`, k) is an ATF coefficient for source `. Note that each
loudspeaker is a 3D point source, there are (N0 +1)2 coefficients to
describe its ATF within the global control region. The ATF coeffi-
cients are assumed to be a prior knowledge obtained from theoretical
solutions or pre-calibration [29]. In anechoic condition, γmn (`, k) =

−ikh(2)
n (kr`)Y mn (π/2, φ`), where (·) represents the complex con-

jugate.
Then, the generated 3D soundfield is

P (x, k) ≈
N0∑

m=−N0

L∑
`=1

d`(k)

N0∑
n=|m|

γmn (`, k)jn(k‖x‖)Y mn︸ ︷︷ ︸
hm(l,k,‖x‖)

eimφx ,

(10)
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where the spherical harmonic function is written Y mn (π/2, φ)=

Y mn eimφ with Y mn , Cmn P
m
n (0) and Cmn =

√
2n+1
4π

(n−|m|)!
(n+|m|)! .

Referring to (2), the global desired soundfield is written

Pd(x, k) ≈
N0∑

m=−N0

βm(k)Jm(k‖x‖)︸ ︷︷ ︸
bm(k,‖x‖)

eimφx . (11)

Due to the dimensionality mismatch between the 2D desired
soundfield and 3D secondary sources, the problem of 2.5D repro-
duction is to match the 2N0 + 1 azimuthal terms

L∑
`=1

d`(k)hm(`, k, r) = bm(k, r), (12)

at some reference distance r with r ≤ r0. In the existing methods,
the matching point is simply the center of the setup, i.e., the glob-
al origin at r = 0 [23-27]. However, for multizone reproduction,
local sound zones are normally away from the center. We propose
a matching over the entire global region, i.e., the reference distance
r ∈ [0, r0], as shown in the following.

3.2. Algorithm 1: Weighted mode matching

Here, we propose the cost function

J (d, k) = 1

2π

∫
D

∣∣∣P (x)− Pd(x)
∣∣∣2dx. (13)

Substituting (10) and (11) into (13) leads to

J (d, k) =
N0∑

m=−N0

∫ r0

0

∣∣∣ L∑
`=1

d`(k)hm(`, r, k)− bm(r, k)
∣∣∣2rdr.

(14)
Writing (14) in the matrix form, we have

J (d, k) = dHHd−BHd− dHB + C. (15)

where,

[H]`1,`2 =

N0∑
m=−N0

N0∑
n=|m|

N0∑
n′=|m|

ωmn,n′γmn (`1, k)γ
m
n′(`2, k)

[B]`1 =

N0∑
m=−N0

N0∑
n=|m|

χmn γmn (`1, k)βm(k)

and
ωmn,n′ , Y mn Y mn′

∫ r0

0

jn(kr)jn′(kr)rdr

χmn , Y mn

∫ r0

0

jn(kr)Jm(kr)rdr

We write
H = ΓHWΓ, (16)

where Γ is the ATF coefficient matrix defined as [Γ]n2+n+m+1,` =

γmn (`, k) and W is a (N + 1)2-square weighting matrix defined as

[W ]n2+n+m+1,n′2+n′+m′+1 = δm−m′wmn,n′ .

Similarly, it can be defined that B = ΓHXb, where

[X]n2+n+m+1,m′+N0+1 = δm−m′χmn

and [b]m+N0+1 = βm.
Minimizing J in (15), the solution is

d̂ = H−1B = (ΓHWΓ)−1ΓHXb. (17)

3.3. Algorithm 2: Sectorial weighted mode matching

Sectorial mode matching is the most widely used 2.5D reproduction
method, where only the sectorial modes at n = |m| are matched and
the matching point is at the global origin r = 0 [23-27].

Here, we remove the requirement of the matching at the center
and apply the weighting approach to the sectorial mode matching.
That is, for the sectorial mode approximation,

hsect
m (`, k, r) = γm|m|(`, k)j|m|(kr)Y

m
|m|. (18)

Then, we have
Hsect = ΓHsectW sectΓsect, (19)

where Γsect is a matrix of size (2N0+1)×L, i.e., [Γsect]m+N0+1,` =
γm|m|(`, k), and the diagonal weighting matrix

[W sect]m+N0+1,m+N0+1 = [Y m|m|]
2

∫ r0

0

[j|m|(kr)]
2rdr

is of size (2N0 + 1)× (2N0 + 1).
Given the global soundfield coefficients b and

[Xsect]m+N0+1,m+N0+1 = Y m|m|

∫ r0

0

j|m|(kr)Jm(kr)rdr,

the solution for the sectorial weighted mode matching is

d̂sect = H−1
sectBsect = (ΓHsectW sectΓsect)

−1ΓHsectXsectb. (20)

Comments:

• In (17) and (20), the matrices H and Hsect are square ma-
trices of size L × L. It shows that the proposed solutions
minimize the mean squared error without approximation and
no regularization is required.

• The weighting functions, W and X , in (17) involve com-
puting the integrals of Bessel-spherical harmonic modes in r
at each frequency. The sectorial weighted mode matching has
reduced computational complexity but only slightly improved
performance as shown in Sec. 4.2.

4. EVALUATION

In this section, the setup and performance of the proposed 2.5D mul-
tizone reproduction are described.

4.1. Simulation setup

We simulate two-zone reproduction examples in a reverberant room
of size 5 × 7 m. Room reverberation is simulated using the image
source method with the image order up to 5 [30]. The wall reflection
coefficient is 0.7 and a perfectly-absorbing surface is assumed for
the floor and ceiling. The virtual source, which is located in the far
field and incident from φV = π/3, produces a monochromatic 2D
plane wave of frequency 500 Hz. Reproduction on the 2D plane is
within a circular control region of radius r0 = 2 m. In the two-zone
example, the bright zone and dark zone are located at Ob = (1.4, 0)
and Od = (−1.4, 0) with respect to the global origin, respectively.
Each sound zone has a radius of 0.4 m. A uniform circular array of
35 loudspeakers 3 m away from the centre of the global region is
used for reproduction, where each loudspeaker is modelled as a 3D
point source. The Lagrange multipliers to solve the global soundfield
coefficients from (7) are set as λ1 = 0.2 and λ2 = 10−3.
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(a) (b)

Fig. 2. Reconstructed soundfields using the proposed (a) WMM and
(b) SWMM methods. The area within the black dashed line and
white dashed line correspond to the global region, local bright zone
and dark zone, respectively. Blue ∗ marks denote the locations of 35
loudspeakers.

The performance measures are the acoustic contrast κ between
the bright zone and dark zone, and the bright zone reproduction error
ε, i.e.,

κ(k) = 10 log10

1
Vb

∫
Db
|P (x, k)|2dx

1
Vd

∫
Dd
|P (x, k)|2dx

(21)

ε(k) = 10 log10

∫
Db
|P (x, k)− Pd(x, k)|2dx∫

Db
|Pd(x, k)|2dx

, (22)

where P (x, k) and Pd(x, k) represent the reproduced soundfield
and the desired soundfield at a point within the bright zone Db or
the dark zone Dd. Vb and Vd denote the area of the bright zone and
the dark zone, respectively.

4.2. Simulation results

The proposed weighted mode matching (WMM) and sectorial
weighted mode matching (SWMM) methods are evaluated in com-
parison with the conventional sectorial mode matching (SMM) used
in 2.5D reproduction. The real part of the reproduced soundfields
using the SMM and SWMM approaches are plotted in Fig. 2. The
display is limited to the maximum value of the reconstructed field
within the bright zone, i.e., acoustic pressure greater than 1 are white
and less than -1 are black. Above 15 dB acoustic contrast and less
than -10 dB bright zone reproduction error are achieved using the
proposed methods.

In the previous example, the distance between the bright zone
or dark zone center and the global origin is 1.4 m. Next, we eval-
uate the system performance under different values of the distance
between the zone center and the global origin. The results are shown
in Fig. 3. The conventional SMM has the lowest bright zone repro-
duction error when the distance is less than 0.5 m as shown in Fig. 3
(b). This corresponds to the case that the sound zones are close to the
global origin, i.e., the matching point at the center of the setup. On
the other hand, the proposed WMM has the highest acoustic contrast
over the entire distance range and also the best bright zone reproduc-
tion performance when the distance is above 0.5 m. Compared with
SMM, the proposed SWMM only shows marginal improvement of
bright zone reproduction accuracy when the sound zones are further
away from the center.
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Fig. 3. Plots show (a) acoustic contrast and (b) bright zone error at
different distances between the bright zone or dark zone center and
the global origin using WMM, SWMM and SMM.
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Fig. 4. Plots show (a) acoustic contrast and (b) bright zone error over
a broadband frequency range using WMM, SWMM and SMM.

Finally, we compare these three methods over a broadband fre-
quency range of [0.1, 1] kHz. The reproduction setup is the same as
in the example of Fig. 2. Notice that in this case, the system, i.e.,
the number of modes and loudspeakers for soundfield representation
and reproduction, is designed at the frequency of 500 Hz 1. The gen-
eral trend is that the system designed at a particular frequency can
produce satisfied results for frequencies less than the designed value.
However, its performance degrades significantly when the frequen-
cy is above the design frequency. These three methods have rough-
ly the same acoustic contrast performance while WMM applies the
weighting over the region of interest thus has the lowest bright zone
reproduction error. SWMM performs slightly better than SMM in
terms of bright zone reproduction accuracy.

5. CONCLUSION

The weighted mode matching approach has been proposed in this
work for the 2.5D multizone soundfield reproduction problem. The
method is based on weighting the Bessel-spherical harmonic modes
over the entire global control region. Through simulations, we show
that the proposed methods better match the bright zone soundfield
than the previous approach such as sectorial mode matching espe-
cially when the sound zone is away from the global center. The
proposed weighted mode matching method demonstrates the best
reproduction performance in a reverberant room and over a wide fre-
quency range.

1The approach is applicable to speech or music reproduction but the num-
ber of speakers increases with the frequency and global region radius.
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